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Note to the Reader

You will find that sets of exercises appear in

every chapter, and that answers to all of them
appear in the back of the book. Before consult-
ing the answers you will want to do your own
figuring. For your convenience, working space
has been provided beneath each exercise as
needed.
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BEGINNING NUMBER

CONCEPTS

1. What is a set?
2. What is a one-to-one correspondence?
3. When are two sets equivalent?
4. What basic ideas are involved in counting?

Cover these dots with your hand. When you
finish reading this sentence, uncover the dots for just a second or two
and try to decide how many dots are under your hand. How many dots
are there?

Were you able to determine the number of dots from a quick glance?
Did you try to count them from a mental picture? Did you try to group
them?

In the early grades children need help in devel-
oping an ability to count. For example, to find the
number of crayons in this set of crayons, one child
might "count":

"One, two, three, five, ten."

Another might rapidly chant:

"One, two, three, four, five, six."

The first child skipped over certain numbers in his attempt at count-
ing. The second child failed to pair each number with a crayon.

In this chapter we shall explore the basic ideas of set, matching,
number, order, and counting. These ideas can provide children with a
strong foundation for building an understanding of mathematics.

set matching number

1
order counting



Mathematics for Elementary School Teachers

MATCHING SETS

How can we decide whether or not there are enough seats in your
classroom for your pupils without knowing the actual number of pupils

or the number of seats in the room?
Inherent in questions like this is the idea of pairing objects. We can

try to pair each pupil with a seat. If we succeed in placing each child in a

seat, then there are certainly enough seats for the children. If we run
short of seats before every child is seated, then there are more children
than seats. If there are seats left over, then there are fewer children than

seats. When seats and children "match," there are just as many of the

one as of the other.
Primitive people used the ideas of pairing objects and matching sets.

A hunter might report that he saw as many men as a dog has legs.

Another might report that he caught as many fish as he has eyes. Notice

that each reported in terms of model sets that were familiar or known to

the person hearing the report.
Young children discover the idea of matching early. They learn to

match their feet with a pair of shoes, the fingers of the left hand with

the fingers of the right hand, the cups and saucers on a table, and so on.

They also discover that certain pairs of sets do not match: "Jim has
more blocks than Mary." They recognize that if two sets cannot be

matched, one of these sets has more members than the other.
Before we look more carefully at matching, let us look at the idea of

a set of things. In mathematics, the term "set" is used to mean a collec-

tion or aggregation or group of objects or ideas. For example, a set of
tools might consist of a hammer, a screwdriver, and a saw. The ham-
mer, the screwdriver, and the saw are called members or elements of this

set of tools. A desk set might consist of a pen, a pencil, a penholder, a
blotter, and a letter opener. A set might consist of the colors red, orange,
and yellow. Another set might consist of the number 3 and the color
blue.

One way to specify a set is shown below:

{Henry, John, Bill)

This is read: "The set whose members are Henry, John, and Bill." The

names of the members of the set are enclosed in braces and separated by

commas.
For convenience, the set may be designated by a single symbol, fre-

quently by a capital letter.

A = [John, Henry, Bill).

2--



Beginning Number Concepts

We read this: "A is the set whose members are Henry, John, and Bill."
The members of a set need not be

related to each other in any special
way (for example, see set B). However,
we should be able to tell whether a
given object belongs to the set or does
not belong to the set.

Now let us consider two other sets.
C is the set consisting of a plane, a
boat, and a car. D is the set consisting of a hammer, a saw, and a ruler.
How can we pair the members of these two sets? Below we see three
ways to pair the members; the double arrows show the pairing.

B = {chair, moon, a, doll).

C {plane, boat, car).

D = {hammer, saw, ruler).

plane twit car

hammer saw ruler

plane boat car

hammer saw ruler

plane boat car

hammer saw ruler

Each way of pairing shows that the two sets match. There are also
other wzys to match these two sets.

Notice that, in any one of these ways of pairing the members of the
two sets, each member of set C was paired with a member of set D: and
each member of set D was paired with a member of set C. In no case
are two members of either set paired with the same member of the other
set. Children might say that the sets match because there is "none left
over," meaning that no member of either set is left without a "partner"
in the other set.

When we have such a pairing between the elements of two
sets, we say that a one-to-one correspondence has been
established between the two sets.

Early elementary school children need not use the language "one-to-
one correspondence," but they should be able to recognize when two
sets "match" and when they do not match. Both of these situations are
important. However, at this stage we shall concentrate on the case
where sets match.

*NOTE. In the exercise sets that follow, both in this chapter and
throughout the book, working space is provided after each exercise for your
convenience in figuring. (Answers to all exercises appear at the back of
the book) 3
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Exercise Set 1
1. Tell how to decide without counting whether or not there are as many

dots below as there are fingers on two hands.

2. Suppose you do not know how many chairs there are in the school library,

nor how many people there are on the school staff. How could you decide in

advance, without counting, whether or not there are enough chairs for the staff

to hold a meeting in the library?

3. Directing yoi'r attention again to Exercise 2, name the three possibilities

that exist when comparing the set of people on the school staff and the set of

chairs in the school library.

4. Write the names of the days col a week within a pair of braces. Name the

set thus indicated with a capital letter, A.

5. Display one pairing of the elements of set B

and the elements of set A from Exercise 4. B = ta, b, c, d, e,f, gl.

6. When can we say that a one-to-one correspondence has been established

between two sets?

7. Below are five sets. For which pairs of these sets can we establish a one-to-

one correspondence?

A = fa, b, cl. D = !dog, sun, Bill, eraser }.

B = {chair, comb, Mary, Jane}. E = {pencil, pen, book}.

C = {orange}.

4
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B. For sets A and E in Exercise 7. show six ways to pair the elements. (If you
are ever asked to produce all possible matchings of your fingers and your toes.
don't do it. There are 3.628.800 matchings!)

NUMBER
We have considered the idea of a set as a collection of things which

may be physical objects or abstract ideas. We have also considered the
notion of pairing the members of sets. Now suppose that at the be-
ginning of a school year you were given a set of class record cards. You
might pair a record card from the set of record cards with a student
from the set of students. If each record card were paired with a pupil
and each pupil were paired with a record card, we could say the two
sets have a one-to-one correspondence; that is, they match.

Now let us see how the idea of matching is related to the idea of
number.

Early man used a matching process. For example, he might have
made a tally mark, or cut a notch in a piece of wood, or gathered a
pebble for each animal he saw. He then told others that he saw as many
animals as the marks or pebbles he displayed.

Young children also use the idea of matching. In a typical situation
two boys might notice that their toy airplanes match because they can
pair them "one-for-one." This primitive notion of one-to-one corre-
spondence, or matching, leads to the idea of "as many as," and this in
turn leads to the idea of "number." Let us see how this development
comes about.

The sets A and B indicated here can /1 = {John, Pater, hat .

be matched. Sets A and C can also be
B = (comb, dish, pencil),

matched, as can sets B and C.'.
Two sets, such as A and C, whose c =.1shoe, orangal,

members can be paired in a one-to-
one correspondence are said to be equivalent. (This is not the same as
saying the sets are equal. Equal sets have exactly the same members.
Equivalent sets can have different members.) Imagine other sets that
are equivalent to set A, to set B, and to set Cfor example, (hammer,
moon, tree).

A collection consisting of the sets A, B, and C above is an example of
what we shall call a family of sets. In general, we shall call a collection
of sets in which any two sets are equivalent a family. Any two sets in
such a collection can be matched in a one-to-one correspondence.5
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If two sets are not equivalent, they cannot be in the same family. For
example, consider the set

D = {square, triangle, circle, diamond}.

Could set D be in the same family with sets A, B, and C above? Clearly
not, because D is not equivalent to A, B, or C.

Suppose we were to form a family of sets including set D as a member.

All the sets in this new family would be equivalent to set D. None of
them would be equivalent to sets A, B, or C above.

Consider the set of lakes known as the Great Lakes. Can this set
belong in a family together with set D?
Why, or why not?

Sets E, F, and G can form a family
of sets. Why? Give some other ex-
amples of sets that can belong in a
family that also contains E, F, and G
as members.

To summarize: From our definition of a family it follows that every
two sets in the same family are equivalent. This means that if we select

any two sets from the same family, the elements of the sets can be
paired one-to-one.

Now we are ready to think of number. Consider a family that con-
tains set E above. Unofficially we feel that each set in this family has
two members. "Twoness" is a common property (characteristic) shared

by all the sets in this family. Similarly, imagine a family of sets where
one of the sets is the set of fingers on one hand. The set of lakes called

the Great Lakes is another eligible member of this same family. "Five-
ness" is a common property of these sets. When a child recognizes
which sets are eligible for membership in this family, he is beginning to
form an idea of the number "five."

To communicate ideas, we use words or symbols. We have special
words and symbols for talking about numbers. To convey the number
idea or common property 61 a family of sets that includes the set of
Great Lakes, we use the words "five," or cinq (French), or pyet
(Russian), or others. The words describing this number idea are dif-
ferent, but they refer to only one number idea. Of course, we can write
the symbols "5," "V," "I.," or other symbols to refer to the number
of elements in the set of Great Lakes. A symbol such as "5" is not the
number five; it is simply one way to name the number five. We shall see

that there are many other ways.
In order to denote numbers, we use symbols called numerals. Thus

E = 'window, door).

F = {hand, swing}.

G = /pen, pencil'.

6



Beginning Number Concepts

"5" or "five" are numerals used to convey the idea of the common
property of a particular family of sets. When we write the word "Eng-
land," we are writing the name of a country. Similurly, when we write
the numeral "5," we are writing a name for a number. We can change
the number symbol "5" to "V," but e do not change the number idea
in our minds.

As children learn to recognize the
number property of a set of elements
such as set A, they learn to associate
the number 4 with this set.

To indicate that 4 is associated with set A, we have a standard
symbolism. To show that set A has 4 elements, we can write "n(A) = 4,"
which may be read in any of the following ways:

The number of elements in set A is four.
The number property of set A is four.
The number associated with set A is four.
The number of set A is four.

A = {comb, book, clock, apple }.

We shall use the symbol n(A) for our discussion.

Exercise Set 2

1. How can you decide whether or not two sets can belong to the same family?

2. What common property do any two sets in a family of sets have?

3. When we write n(D) --.. 7, how many members are we asserting there are in
set D?

4. Give an illustration of a set D such that n(D) = 7.

5. List the elements of another set that can be in the same family of sets as
set D of Exercise 4.

7
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6. What does n(D) = n(E) mean?

7. What number is associated with any set in a family of sets to which D

of Exercise 3 belongs?

ORDER
We have seen how matching is involved in developing the idea of a

family of equivalent sets and how the idea of number as a common
property emerges for each family. Numerals, or number names, were
invented to communicate number ideas. Our next task is to determine a
suitable family for any given set.

Imagine that we have set up some families of sets. We shall refer to
each family by the number property of that family. For example:

FAMILY 1-- a collection of sets, each in one-to-one correspondence
with the set of tallies /

FAMILY 2 a collection of sets, each in one-to-one correspondence
with the set of tallies /1

FAMILY 4 a collection of sets, each in one-to-one correspondence
with the set of tallies ////

FAMILY 9 a collection of sets, each in one-to-one correspondence
with the set of tallies ///// ////
Now to decide the number of elements in set

A, it is only necessary to decide to which fam- A = O, A , 0, v
ily set A can belong. To do this, a auld might
match set A with a set from one of the above families whose number is

already known. When, for example, he finds a set that can be matched
(placed in one-to-one correspondence) with set A, then set A can belong

to the same family as that set. He will find that set A matches a set

from Family 4. Therefore, set A can belong to Family 4 because the
number of elements in set A is 4.

This procedure of determining the number of elements in a set by

matching it with a set from a particular family works well for sets with a

small number of elements. If a set contains 173 elements, this procedure
of matching is cumbersome and needs to be refined. One way of doing

this is by counting. We have grown so accustomed to counting that we

count automatically. Nevertheless, let us examine counting a little more

closely.
Counting depends on the fact that there is a natural order among8
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numbers. This natural order stems from the fact that often sets cannot
be made to match.

Suppose that a child does not know A = (Ed, Richard, Bill, Ralph).
that set A has more elements than set
B. If he tries to pair the boys from set

B = (Pat, Irene, Sonia).

A with the girls from set B, he soon c = (Ed, Richard, Bill).

realizes that these sets cannot be made
to match. No matter how he tries to pair the members of these sets, he
finds that a member of set A is "left over." Therefore, he orders the sets
and says, "There are more boys than girls."

The child's matching C `he set of girls with "part" of set A gives us a
hint as to how to order nonit.atching sets such as A and B above. Now
consider set C, namely (Ed, Richard, Bill). Observe that al! of its ele-
ments are members of set A, so that set C is actually a "part" of set A.
But set C matches set B. Thus, a "part" of set A can be matched with
all of set B. When this happens, we say that A has more elements than B
or that the number of set A is greater than the number of set B. We also
say that B has fewer elements than A or that the number of set B is less
than the number of set A.

We have said that set C is "part" of set A. Because every member of
set C is also a member of set A, we say that set C is a subset of set A. In
general, if every member of set X is also a member of set Y, then it is
customary to say that X is a subset of Y. Notice that, according to this
definition, every .;et X is a subset of itself (because every member of X is
surely a member of X!). Returning to the above example, where set C
is a subset of set A, observe that set A is not a subset of set C. Notice
that there is a member of set A (namely, Ralph) which is not a member
of the subset C. Because of this we also call C a proper subset of A. In
general, when set X is a subset of set Y and there is an element in set Y
that is not in set X, then we say that set X is a proper subset of set Y.

As another example, consider the
sets D and E. To show that the num-
ber of set E is less than the number
of set D, we must show that set E can
be placed in a one-to-one correspondence with a "part" or proper sub-
set of set D.

This is easy to do. Consider a proper subset of D consisting of Henry
and the banana. This proper subset of Dthat is, (Henry, banana}
can be matched one-to-one with set E. (The pairing can be achieved
by thinking of Henry on the chair and the banana on the table.) There-
fore the number of set E is less than the number of set D. It can be
shown that the number of any set equivalent to E is less than the num-
ber of any set equivalent to D.

D = {0, A, Henry, banana }.

E = (chair, table).

9
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The number of set D is 4. The number of set E is 2. To indicate that 2
is less than 4, we write "2 < 4," which is read: "Two is less than four."

We can show that set F is equivalent
to a proper subset of set G. (For ex-
ample, pair dog with tree!) Therefore,
1 is less than 5. We write "1 < 5,"
which is read: "One is less than five.

So we can use the matching of sets to decide upon the order of
numbers. For example, we have just seen that 2 is less than 4 and 1 is

less than 5. In the same manner we can establish that

F = 'clog).

G = {plane, train, ship,
rug, tree).

1 <2, 2 < 3, 3 < 4, 4 < 5, 5 < 6,

and so on.
Thus, using the basic idea of matching sets and subsets, the teacher

can structure children's experiences so as to develop the ideas of
number and order among numbers. In doing this, the teacher may pre-

fer to use informal language.

Exercise Set 3

1. Which of the sets indicated below are subsets of set G? G = {block,

crayon, papery.

A = {block!. C = {paper}. E = toy, crayon }.

B = (crayon). D = {block, crayon). F = (block, crayon, paper).

2. Which of the sets i.1 Exercise I are proper subsets of set G?

3. Show that set A can be matched
one-to-one with a subset of set B.

[A = {Mary, John}.

B = (black, pencil, pen).

4.1f, in Exercise 3, set A can be matched with a proper subset of B, what

can be said of the number of set A and the number of set B?

10
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5. How do you read "2 < 3"?

6. What does "n(A) < n(B)" mean?

7. Make up two sets (caii them "E" and F") to show that 1 < 2.

8. Make up two sets (call them "R" and "S") to show that n(R) < n(S).

COUNTING
We have established a procedure for ordering numbers. Listed in

order, they are 1, 2, 3, 4, 5, 6,..., with the three dots to indicate that
the pattern continues without end. The next number may always be
obtained by adding 1 to the preceding number. (The notion of adding
will be carefully examined in a later unit on addition.)

Another way to develop the idea of numbers in order is to begin with
a representative set which could be in Family 1.
This set contains a single element. Now form a
new set consisting of this element together
with another element. This new set is in Family
2. In a similar manner, by including still an-
other element, we form a set in Family 3, and
so on.

You will recall (see page 8) that to decide the number of elements in
a given set, it is nly necessary to find a family to which it can Wong.
It has that family number. This is easily done for sets with a small
number of dements. But if a set contains a great many members, and
we do not know the number of elements and want to find out, the above
procedure needs to be refined. Counting is a refinement of the above
procedure.

Now we are ready to make THE BIG STEP. Suppose we want to find
the number of some set. We can do this by pairing the objects of that set
with the numbers in the .!et of ordered numbers.11
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For example, here is pictured a set of marbles. . 0
Let us consider this the set whose number we are
trying to find. If we go back to matching objects, 0 4 e
we can select a representative set from a family
whose number is known and try to match this set with the marbles as
shown below:

Family Family Family Family Family Family Family etc.

I 2 3 4 5 6 7

X X X X X X

X X X X X X

X 4%
St X X X

X X X

X X X

,,--
arbles

X X
x

We attempt to pair the marbles with the members of the various repre-
sentative sets until a one-to-one correspondence is established. In this
case, the set of marbles matches a set in the 5 family.

Of course, it is inconvenient to carry around a representative set of
X's, or rccks, or sticks, or any other objects. A giant step in man's
mathematical deve!opment (and also in the child's) was taken when
man realized that he could always "carry" the numbers with him.

INSTEAD OF PAIRING WITH OBJECTS, WE PAIR WITH
NUMBERS. Let us now find the number of marbles in the set by pair-
ing marbles with numbers.

1 2 3 4 5 6 etc.
X X Xx X X X

X X
X X X X

X X X
X X

OMO 00 X

Remember, the numbers are ordered. So begin by pairing any marble
with 1. Any other is then paired with the next number in order-2.

12
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This pairing continues until each marble is paired with a !lumber.
The last ordered number paired with a marble is the number
that -0011111S.. the set of marbles.

Therefore, there are five marbles :n the set.
To find IRA many objects are in a set, you simply count, or pair

each object with a number in order. The number paired with the last
object to be accounted for is the number of objects in the set. k hen a
child can perform this pairing to find the number of objects in a set,
then he has truly learned to count.

1 2 3 4 5 6 7 8 9 10 11 12 13

I I I I I I I I I I I I

It is interesting to note that 1 2 3 4 5 6

the members of a set, such as
set B, may be taken in any
order when we count them.
For example, the chair may be
selected first, but it must then be paired with 1; the next object selected,
say the brush, must be paired with the next number in order, 2- and
so on. The last number in order with which a member of a set is paired
is ti-e number of members of the set.

Why is it that the last number in order with which a member of a set
is paired is the number of elements in that set? The reason is to be found
in a rather remarkable fact that is often overlooked. Suppose that from
the entire set of ordered numbers 11, 2, 3, 4,...) we select any proper
subset consisting of consecutive numbers listed in order beginning with
I. For example, we might select 11, 2, 3, 4, 5). The remarkable fact is

that the number of elements in this proper subset is the last member of
this set when the members are named in order. As another example,
think of the subset { I, 2, 3, 4, 5, 6, 7, 8}. Again, the number of elements
in the subset is the last member of the subset when the elements are
arranged in order.

When we counted the number of
marbles in the set, we were actually it 2, 3, 4, 5, 6, 7, 8,

matching the set of marbles with a
certain ordered subset of the ordered
set of numbers. We know the number
of elements in the subset of numbers.
Therefore, the set of marbles can

B = (comb, brush, chair, dog)

13
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belong to the same family as the set 11, 2, 3, 4, 51 and has the same
number property.

However, when we count, we accept this "obvious" fact and simply
say that the number of elements in a set is the last number (in our
ordered set of numbers) with which a member of the set is paired.

The set of numbers 11, 2, 3, 4, 5,... }, which we have used to count
elements of a set, is called the set of counting numbers. This set of
numbers is also called the set of natural numbers.

In our discussion of families of sets, we did not mention a certain
special family. It is special because this family has only a single set.
Think of the set of children over 12 feet tall in your class. How many
children are in this set? Think of the set of all U.S. presidents born be-
fore 1492. How many elements are in this set? If a set has no elements at
all, we call it the empty set and represent it with the symbol 11." Since
any example of the empty set contains the same members (namely, no
members!), we say there is only one empty set and call it the empty set.
The number assigned to the empty set is 0; that is, n( { }) = 0.

Let us form a new set consisting of 0 together with the counting
numbers: {0, 1, 2, 3, 4, 5,...}. This set is called the set of whole numbers.
(Some mathematicians prefer to call the set {0, 1, 2, 3, 4, 5,...} the set of
natural numbers. Unfortunately, there is no unanimity on this score.)

Exercise Set 4

1. The members of set A can be counted in 1 2 3 4 5

six different ways. Two of these ways are
shown at the right. Find the other four ways. A = {girl, eraser, dog}.

3 4 5

A = {girl, eraser, dog }.

2. In Exercise 1, for each of the six different ways that you counted the ele-
ments in set A, what was the last number matched with an element from set A?

3. How would you describe counting?

14
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4. What is the least number in the set of counting numbers?

5. What is the least number in the set of whole numbers?

6. Give an example of a set that has no members. What do we call such a set?

SUMMARY

V
set matching number order counting V

The ideas indicated here form a firm and necessary foundation on
which children can build mathematical understanding. Teachers need

to structure experiences for the children so that these ideas take on

deeper meaning.
Let us review the ideas of sets, matching, number, order, and count-

ing. One activity that might be used is suggested below.
Begin with two setsa set A of children sitting around a table and a

set B of crayons in a box on the table. Each child is asked to take a

crayon from the box. There are three possibilities:

I. There are more crayons than children. The set
of children can be matched one-to-one with a
proper subset of the set of crayons.

2. There are as many crayons as children. The
set of crayons and the set of children' are equivalent.
(Each member of one set can be paired with a
member of the second set in such a manner that
each member of the second set is also paired with a
member of the first set. In no case are two mem-

bers of either set paired with the same member of
the other set.)

15
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3. There are more children than crayons. The set
of crayons can be matched one-to-one w ith a
proper subset of the set of children.

Bill Jim Ann Mary

When children attempt to match two given sets Al and B, they soon
recognize that there are these three possibilities. There are three corre-
sponding possibilities for any pair of numbers a and h:

a < b, a = b, b < a.

The teacher should develop situations in which equivalent sets are
involved. The children can collect families of equivalent sets. They
should be helped to realize that there are equivalent sets in their class-
room. For example, there may be four chairs around a table, four
books on the table, and so on. The children should be helped to match
a set of books with a set of crayons, or with a set of papers, or with
some other set. When sets match, they may be thought of as belonging
to a particular family of sets. When a child begins to recognize that all
these set.; in a family have something in common, the child begins to
develop an idea of number, such as number 4.

With the idea that some sets can be matched with a proper subset of 1.
set, the idea of ordering of numbers can be developed. For example,
children may begin to develop ideas of 4
and 5 from families of sets. Now if they
see that set G is matched one-to-one with F = la, b, c, d,

G = {o, 0,11,1;!.
el.

a proper subset of F (F has something
"left over"), they can be led to under-
stand that 4 is less than 5, or 4 < 5.

When children begin to understand matching, number, and ordering
of numbers, they are ready to count. To count the number of words on
this page, they would pair each word with the counting numbers in
order: I, 2, 3, 4, 5, 6,... .

Teachers have realized that THE BIG STEP is taken when children go
from pairing objects with objects (for example, chairs with crayons) to
pairing members of a set with the counting numbers in order.

The set of numbers { I , 2, 3, 4, is called the set of counting
numbers.

The set consisting of 0 together with all the counting numbers is the
set of whole numbers:

{0, 1, 2, 3, 4,...}.

16



DEVELOPMENT OF

OUR DECIMAL

NUMERATION SYSTEM

1. Why is our familiar numeration system
called a decimal numeration system?

2. What is meant by place value?

3. What are the basic ingredients of our
decimal numeration system?

4. What is expanded notation?

Suppose you wanted your pupils to memorize the names of 10,000
persons listed in a telephone book, and to recite these names in order?
Wild idea? Extremely difficult to do? Yet you may have already taught
pupils to recite (if you asked them) many more than 10,000 names in
order. These are the names of numbers.

How is it possible for pupils in the years they spend in elementary
school to learn to write names for thousands and even millions of num-
bers? The answer, of course, is that we teach pupils to use a remarkable
system for representing numbers the Hindu-Arabic system of numera-
tion with its ten basic symbols or digits.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

A LOOK BACK

A better appreciation and understanding of our system of numeration
may be gained by examining some early systems of numeration. Ele-
ments of these early systems play a part in the system we use today.

The earliest and simplest system was based upon one-to-one

17
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correspondence. For example, when a primitive man saw animals in the
forest, he might have wished to let his tribe know how many he saw. He
could not carry back the animals to show the tribe, but he could carry
back sticks or rocks or any other available objects. He might have dis-
covered he could pair the animals with the fingers of his hands and show
how many with his fingers. This would certainly be easier than carrying
back rocks.

As the need arose for representing greater numbers, our primitive man
ran into trouble. Can you imagine him staggering back to the tribe with
25 rocks, 87 rocks, or perhaps even 100 rocks in his hands to indicate
that he had seen that many animals? As man progressed, he had to in-
vent a simple and effective method for representing large numbers.

Imagine how we might check the attendance of a class returning from
lunch if we were teaching in those primitive days. We might drop
a pebble into a bowl for each pupil entering our "classroom." When
the bowl was filled with pebbles, we could place a rock to one side to
show the bowl was filled and then empty the bowl. Then we would start
over again. In those old days you
might have had a class size as 00000shown at the right. The diagram
indicates that the number attend- rocks

ing was as many as five bowlfuls
of pebbles (represented by the
five rocks) and three more peb-
bles in the unfilled bowl. (This crude method assumes, of course, that
the bowl held the same number of pebbles each time.)

Manipulative materials alone served man's needs for a long time.
Later he invented written symbols as a more convenient way of record-
ing and communicating number ideas. You
have probably used one of the earliest and

For Class President
simplest systems for expressing numbers

John NI tAtz g
when you have recorded votes for class officers.

Jim TIV ////One symbol (tally mark) is repeated for each

bowl of

pebbles

All //
vote cast. Now suppose you wished to record

Bill

John's total vote in a notebook. You could
record ////////////, or HAL Hi( //, as shown in the illustration.

Even ancient civilizations such as the Egyptian, some five thousand
years ago, realized that it would be too unwieldy to write as many tally
marks as the number of objects recorded. Think of expressing a million
in this manner. So the Egyptians decided to use I for one, II for two, III

for three, and so on up to nine. However, when they reached ten, they
introduced a new symbol. The Egyptians wrote fl for ten.

You might wonder why a new symbol was invented for ten and not

18
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for four or seven or any other rramber up to ten. It is generally believed
that because the ten fingers were so obviously available to be used for
counting, objects were counted and grouped
by tens. Therefore a special or new symbol
was invented for ten, a different symbol for
ten groups of ten, another symbol for ten
groups of ten groups of ten, and so on. We
can see this dependence upon tens in the
ancient Egyptian system of writing num-
ber names.

Now a system requires more than just a set of symbols. It also re-
quires some scheme or plan for combining the symbols. The Egyptians
could express all the counting numbers from 1 through 99 with the use
of only the two different symbols I and n. For example, nn III meant
23. If 11 meant ten and I meant one, what plan did the Egyptians use
when they wrote nn III for 23? Since (I meant ten, nn meant ten +
ten. Furthermore, Hi meant one + one + one, or three. So nn Hi meant
10 + 10 + 1 + 1 + 1, or 23. This is an illustration of what we mean
when we say that the ancient Egyptians used an addition principle in
their system of writing numerals.

Egyptian Hindu-Arabic
System System

I 1

n 10

9 100

1.000

Exercise Set 1

1. If in the Egyptian system I = 1, n = 10, and 9 = 100, what do the fol-
lowing numerals mean?

d.91
e. 99
t. 99nnil

2. Express 345 with Egyptian symbols.

A. 99nnnniiii
h. 999999911111111

i. 99999nnnnn11111

3. The Egyptians invented symbols for 1 (I), for 10 (n), for 10 >: 10 (q),
for 10 x 10 x 10 (1), for 10 x 10 x 10 x 10 ( ( ), and so on.

a. How did they represent 1,000?

b. How did they represent 10,000?

c. If they were to continue in the same pattern, what did they have to do
to represent 100,000?

d. What did they have to do to represent 1,000,000?

19
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b. How many symbols did they need to represent numbers in the millions?

f. What would they have to do to represent numbers in the billions?

4. In the Roman system, I = 1, V = 5, L = 50, C = 100, D = 500,
M = 1,,;00. What do the following numerals mean?

a. H
b. VII
c. XXVII

d. LXVI g. MXII
b. CCLXXVIII h. MMCCXI
f. DXII i. CCCLXXXIII

(Note that each item in this exercise uses an addition principle. The Romans
also used a subtraction principle for example, in IV, XL, etc.)

5. When we write 23, eve mean 20 + 3. In what respect does this resemble
the plan esed by the Egyptians and th_p_itomans?

6. The Babylonians used for I, and < for 10. What number do yzi-li i;iink

they meant by IV ?

TIVv7. What does the Babylonian numeral (VT mean?

8. As shown in Exercises 6 and 7, what plan did the Babylonians
use in writing their numerals?

POSITION IN A NUMERAL

If you were a teacher in ancient Egypt, one of your pupils might re-
port that the number of parchments borrowed from Pyramid Library
was " nniii." Another pupil might report "ii:nn ." In both reports,
the children indicated that 23 parchments were borrowed. Notice
that nnill and Him represented the same number, but the numerals
looked different. The position of the symbols in the Egyptian system
was not important. In our system, however, 23 and 32 are names for

20
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different numbers. In our system, the position of symbols is important.
The idea of positional value of number symbols seems to have been

used by such ancients as the Babylonians some thousands of years ago.
Remember, the Babylonians used Y for 1 and ( for 10. They repeated
symbols and used an additive principle. For numbers 60 or more, they
introduced the idea of positional value, as shown in this table.

POSITIONS

Sixty One

(<0f
V

NUMBER

32

1

60

VV 2

YY 120

y Y 61

It is interesting to note that might represent one or sixty;
might represent two, or one hundred twenty, or sixty-one.

The context enabled one to decide how to interpret the symbol.

Exercise Set 2

1. What number is represented by each of the Babylonian numerals below?

Sixty One
a. <VY

b. VV

c.

d.

a.

< <

(< "IVY

(Cf (0,

2. What number is represented by the numeral in the following sentences?

a. John and Bill are "fry boys.

b. There are <y y eggs in a dozen.

21
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c. There are V V <<yyyy eggs in a gross.

d. There are V minutes in an hour.

GROUPING, SHORTHAND, AND NUMERALS

We have seen that the ancient Egyptian, Babylonian, and Roman
systems for expressing numbers possessed two or more of these features:

1. A small set of number symbols (for example, the Roman symbols
I, V, X, L, C, D, M)

2. The addition principle- as used, for example, by the Egyptians
(99 nnn = 100 + 100 + 10 + 10 + 10 + 1.)

3. Positional value- as used for example. by the Babylonians

( Y(( = 2 x 60 + 2 x 10.)

Why aren't these systems used today? At the right are some addition
examples as we might set them up'
but expressed with number sym-
bols of the past. Compute the
sum in each case. There are no
addition facts to learn here. There
is nothing to memorize. In
each case all a person has to do is
to copy down all the symbols. For AA
example, the sum is nnn 111, or l( YY
be easier?

Egyptian Babylonian Roman

nnii
+ n 1

(< Y
+(y

xxii

+ XI

Suppose we want to compute the
product of two numbers expressed
'n Egyptian symbols. We might start
the computation as shown at the
right. Only the first four partial prod-
ucts are shown. We still have to
compute products involving the tens.
Care to try to finish the example? It
does become somewhat cumbersome

Y
or XXXIII. W,at could

nnn 11111111

x nn
nnn 11111111

nnn 11111W

nnn
nnn 11111111

(not completed)

to work with these symbols. We can see why the ancients used devices
such as the abacus to help them do their computation.

Although it is decidedly more convenient to compute in our (Hindu -
Arabic) system than in any of the earlier ones, nevertheless our system
actually uses the same fundamental ideas. To see how this comes about,
imagine you are back teaching in ancient times. A child takes attendance

22
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for you by making a tally mark for each child who enters your "class-
room." Here are how many children are present:

/////////////////////////////////////////////////////////
(They had no problem of class s'ze in those days!)

When you ask the child how many are present, he finds it is difficult
and hard going to count one by one. So he groups the tally marks

and reports to you: "Fourteen groups of four and one more."
You tell him that the principal has asked all the teachers to report

attendance by groups of ten. So tie groups the tally marks again

CI=
///////

and reports to you: "Five tens and seven more."

You writ;: attendance. 5 tens + 7 ones
Now imagine that after some time

you get tired of writing 5 tens + 7 ones
and you begin a shorthand- 5 7

On one occasion when you are quite rushed you write:. . .57
When the principal sees your attendance report, he immediately

sends for you.
"What in the world does '57' mean?"
So you explain to the principal your shorthand or abbreviated form

for expressing numbers. The position of the "5" in "57" is important.
The "5" tells the number of tens, and the "7" tells the number of ones.
Once the principal understands your abbreviation "57," he asks
all teachers to learn the shorthand based on position value of digits.
Everyone agrees, once he has learned the pian behind the shorthand,
that it saves time to write "57" to mean 5 tens and 7 ones.

Exercise Set 3

1. Group the X's and express the numbers of X's in terms of fours and ones.

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

23
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2. Group the X's by five and express the number of X's in terms of fives arid
ones.

XX XXX XXX XXX XXX XX XXXXX XXXXX X X

3. Group the X's by tens and express the number of X's in terms of tens and
ones.

XXXXXXXX XXX XX XX XXXXXXXXXXXX X

4. Write an abbreviation for 3 tens + 3 ones.

////////// ////////// ////////// I!!

5. Write an abbreviation for 4 tens and 2 ones.

////////// ////////// ////////// //NUM //

PLACE VALUE

If a stationery sales clerk recorded the number of envelopes sold, he
could use any of the ways
shown at the right. However,
we would know the meaning
of the last two abbreviations
(read: four-three) only if we
knew the clerk's plan for ab-
breviation. We would have to
know that the "4" refers to
four sixes.

K
4 sixes + 3 ones

4 3
43

K

The clerk could also record the same number of envelopes sold (using
groups of ten) in any of the ways shown. Again, we would know the
meaning of the last two abbreviations only if we knew the clerk's plan
for his abbreviation. We would have to know that the "2" refers to 2
tens.

..7.

24--

2 packs of ten and 7 more
2 tens + 7 ones

2 7
27
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The key to our plan for expressing numbers is the idea of place value,
which is based on the way we think of objects' being grouped.

Grouping by tens, it is believed, followed naturally from our having
ten fingers. Elements are grouped in sets of ten for ease in counting.
Thus, to count eleven we thick of one group of ten and one
more. Below you see how ten is used to find the number of X's. There
are two groups of ten and three more.

XXX
XX X XXXX

We use ten as a "stopping" place in counting. We count in
order from one through ten. Then we pause. We continue counting ten
and one, ten and two, ten and three, up to ten and nine, and finally
two tens. We pause at two tens and then continue: two tens and one,
two tens and two, and so on. The idea of grouping by tens, or a "base"
ten, is used to set up a place-value system.

The key to our system for naming all whole numbers by using only
ten digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) is the idea of place value. This iCoa
permits us to abbreviate a numeral

such as 4 tens + 3 ones
to 4 3

or 43

What do we mean by place value? The shorthand "43" means the
same thing to all of us only if we know the plan behind the shorthand.
Our plan is to assign a number to the position occupied by the "4" and
to the position occupied by the "3."

43
place value is ten iiplace value is one

The nunzher assigned to the position occupied hr each digit
is the place value of that position.

The "3" occupies the ones place
in "43." The "4" occupies the tens
place.

Of course, for a large number
of objects, groups of ten tens are
formed, and so on.

25
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Li
Thus 134 means

4
lace value - one

place va!ue - ten (base)
place value - one hundred

I x 100 + 3 x 10 + 4 x 1 or 100 + 30 + 4

Each digit in the numeral 134 represents a product. In the numeral
134 the digit 1 represents the product 1 x 100; the digit 3 represents the
product 3 x 10; the digit 4 represents the product 4 x 1.

To summarize what we have said about place value:

1. Each digit in a numeral occupies a position in the numeral. The
number assigned to each position is called the place value of that position.

2. Each digit in a numeral actually represents a product. It is the
product of the number named by the digit and the place value assigned
to the position occupied by the digit.

3... 1

I

6

T place value - one
place value - ten
place value - one hundred
place value - one thousand

Exercise Set 4
1. Write an abbreviation for each of the following:

a. 3 tens + 6 ones
b. 5 hundreds + 6 tens + 7 ones
c. 8 thousands + 6 hundreds + 4 tens + 5 ones
d. 4 thousands + 0 hundreds + 7 tens + 3 ones
e. 3 x 10 -1- 6 x 1

f. 5x 100 + 6x10 + 3x 1

g. 8x 1,000 + 7x100 + 6x10 + 4x1
h. 5 x 1,000 + 6x 10 + 8 x 1

2. What product is represented by each digit in the numeral 347?
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3. What product is represented by each digit in the numeral 4,916?

4. What product is represented by each digit in the numeral 3,033?

PLACE-VALUE CHART

To help children understand our plan for writing numerals, we can
display our plan in the form of a place -value chart. Such a chart in-
dicates the number to be assigned to each position occupied by a digit

in a numeral such as 56,342. The key to understanding a place-value

chart is to understand the part played by our base number ten.

PLACE-VALUE CHART

Ten x ten
.x ten ten

Ten x ten
x ten

Ten 4 ten Base ten Om:

10.000 1.000 100 10 1

5 6 3 4 2

What pattern do you see in our plan for assigning numbers to each
position of a digit in a numeral? As we move toward the left from the
"one" position, each new position is assigned a value ten times as great

as the number assigned to the previous position.
Our system of writing numerals is called a decimal system. It is based

on tens. Systems based on numbers other than ten could be, and have

been, devised.

Exercise Set 5

1. What product is represented by each digit in

a. 56,342? b. 20,518?

2. How would you find the value of the position immediately to the left of

the ten x ten x ten x ten place?
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3. Examine the place-value charts below. Each is built upon a grouping by
other than ten. In each chart, what is the value of the next three positions
immediately to the left of the base place?

a. PLACE-VALUE CHART

b.

Eight x eight x eight I Eight x eight I Base eight I One

PLACE-VALUE CHART

Seven x seven I Base seven I One

c. PLACE-VALUE CHART

IBase five One

d. PLACE-VALUE CHART

IBase six I One

STANDARD FORM AND EXPANDED FORM

We have all used such standard abbreviations as "in." for inch, "yd."
for yard, and "ft." for foot. It is convenient to use abbreviations pro-
vided there is general agreement as to the meaning of the abbreviation.

A numeral such as 34 is the standard numeral for the number thirty-
four. The numeral 34 is an abbreviation (standard) for "30 + 4," or
"(3 x 10) + (4 x 1)." We use the standard numeral 34 for convenience and
for uniformity of response.

Two different numerals for the number thirty-four are "30 + 4" and
"34." The usual way of asserting that these two numerals name the
same number is to write 34 = 30 + 4.

"34" is called a standard numeral.

"30 + 4" is called an expanded form of the standard numeral 34.

To express a standard numeral in expanded form, it is necessary to
think of the place value of each digit. For example,

347 = 3 x 100 + 4 x 10 + 7 x 1 or 300 + 40 + 7.

In 347, the "3" represents the product 3 x 100: the "4" represents the
product 4 x 10; the "7" represents 7 x 1.
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Notice that the value of the numeral is the sum of the products rep-
resented by each of it'; digits, according to the position of each digit in
the numeral.

We saw previously that
the idea of adding the
values of each symbol was
used in earlier systems also.

The form of the expanded numeral will vary depending upon the
grade level and previous learning of the children as well as the
preference of the teacher. Let us illustrate with the standard numeral
356.

nn III = 10 + 10 + 1 + 1 + 1.
xxxii = 10 10 + 1.

57 50 + 7 or
5 x 10 + 7 x 1.

PLACE-VALUE CHART

Ten A ten

3

Base ten One

5 6

356 = 3 x 100 + 5 x 10 + 6 x 1

= 300 + 50 + 6.

From our place-va!ue chart, the standard numeral "356" means

356 = 3 x(10 x 10) + 5 x 10 + 6 x 1.

Thus, we have several expanded forms for the numeral 356.

356 = 3 x(10 x 10) + 5 x 10
= 3 x 100 + 5 x 10 +
= 300 + 50 + 6.

Consider another illustration.

PLACE-VALUE CHART

Ten x ten x ten

4

Ten x ten Base ten One

5 3 6

STANDARD
NUMERAL EXPANDED FORMS

4,536 = 4,000 + 500 + 30 + 6
= 4 x 1,000 + 5 x 100 + 3 x 10 + 6 x 1

= 4 x (10 x 10 x 10) + 5 x (10 x 10) + 3 x 10 + 6'x1

In the last exp tided form, notice the "10 x 10 x 10" and "10 x 10."
e can abbreviate 10 x 10 x 10 as 10' (read "ten cubed") and 10 x 10 as

10= (read "10 squared ").
In 10' and 10= the 3 and the 2 are called exponents. If we use

exponents, our place-value table begins to look like this:
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PLACE-VALUE CHART

Ten x tcn x ten " Ten x ten Base ten One

10' 10' 10 1

5 4 0 3

5,403 = 5,000 + 400 + 0 + 3
= 5 x 1,000 + 4 x 10( + 0 x 10 + 3 x 1

= 5 x (10 x 10 x 10) + 4 x(10 x10) + 0 x 10 + 3 x 1

= 5 x 10' + 4 x 10' + 0 x 10 + 3 x 1.

The use of exponents helps us to simplify our expanded numerac,.

Examine the place-value chart below.

PLACE-VALUE CHART

Ten x ten x ten x ten Ten x ten x ten Ten x ten Base ten One

10' 10' 10= I0 1

3 4 2 8 9

Standard numeral 34,289

= 30,000 -f 4,000 + 200 + 80 + 9

= 3 x 10,000 + 4 x 1,000 + 2 x 100 + 8 x 10 + 9 x 1

= 3 x(10 x 10 x 10x 10) + 4 x(10x 10x 10) + 2 x(10x 10) + 8 x 10 + 9x1
= 3 x 10' + 4 x 10' + 2 x 10' + 8 x 10 + 9 x 1

In the last expanded numeral for "34, 289" you will notice how the

exponents decrease in order from left to right. In fact, this continues

past the 2 x 10' term. We define 10' as 10 and 10" as I. Therefore 8 x 10

may be written 8 x 10', and 9 x 1 may be written 9 x 10".

STANDARD
NUMERAL

EXPANDED NUMERAL

34,289 = 3 x 10' + 4 x 103 + 2 x 10' + 8 x 10' + 9 x 10".

As we said earlier, the form of the expanded numeral used in your

class will depend upon grade level, previous learning, and teacher pref-

erence. The various forms have been shown in order to suggest how the

child's understanding of our numeration system develops.
We have seen that a number can be named in many ways. For

example, it can be named by a standard numeral (57) or by the

expanded numeral (50 + 7). To show that two numerals name the same

number, we use an equality sign (= ) and write 57 = 50 + 7. If we write

the sentence 642 = 600 + 40 + 2, we are stating that the numeral 642 and

the numeral 600 + 40 + 2 name the same number.
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Some mathematical sentences, such as 57 = 50 + 7, 642 = 600 +
40 + 2, 6 = 5 + 1, and 8 = 5 + 4, can be judged true or false. For ex-
ample, judge these statements true or false:

I. 734 = 700 + 30 + 4. (True)
2. 652 = 6 x 10' + 5 x 10 + 2 x I. (True)
3. 8,316 = 8 x 10= + 3 x 10 + 16. ( False)

We often encounter mathematical sentences, such as 6 + = 10,
that show a relationship in a problem. (If a boy has 64, how much more
does he need in order to buy a l& notebook?) The symbol is usually
called a frame. The sentence 6 + = 10 cannot be judged true or false
until a numeral is placed in the frame. We say the truth or falsity of the
sentence is open until we "fill in" the frame. Sentences such as 6 + =
10 are called open sentences. If we fill in the frame with a "5," we have
6 + ©= 10, which is i. false statement. If we fill in the frame with a
"4," we have 6 + 4 = 10, which is a true statement.

Exercise Set 6
1. Write a place-value chart going from ones through to ten thousands using

a base ten. Use both the notation of ten x ten x ten and also the exponent
notation, such as 10', and so on.

2. Write four expanded numerals for each of the following:

a. 146 b. 329 c. 7,146 d. 33,412 e. 296,314

3. Write standard numerals for the following:

a. 4x 100 + 3x 10 + 6 x 1

b. 6 x1,000 + 5x100 + 4x10 + 7x1
c. 7,000 + 600 + 50 + 8
d. 5,000 + 60 + 9
e. 6x10,000 + 5x1,000 + 4x100 + 3x10 + 6x1
f. 4 x 1,000 + 6x100 + 7x10 + 6 x 1

g. 5 x 10,000 + 0 x 1,000 + 0 x 100 + 6 x 10 + 0 x 1
h. 4 x 10' + 3 x 10' + 6 x 10' + 1

i. 7 x 10' + 4 x 10' + 7 x 10" (Remember 10" = 1)
j. 8 x 10' + 5 x 10' + 6 x 10' + 7 x 10"

k. 9 x 10' + 6 x 10' + 3 x 10' + 2 x 10' + 5 x 10' + 6 x 10"
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I. 7 x 106 + 3x10' + 6 x 10' + 9 x 103 + 6 x 10' + 0 x 10'

+ 0 x 10"

m. 8 x 106 + 0x10' + 0 x 10' + 3 x 10' + 0 x 10' + 5 x 10'

+ 6 x 10"

4. Fill in the frame in each open sentence so that a true statement results.

a. 24 (2 x0) + 4.

b. 93 = (0 x 10) + 3.

c. 146 = (Dx 102) + (4 x 10) + (6 x 1).

d. 347 = (3 xD) + (4 x 10) + (7 x 1).

S. 4,569 = (4 x 103) + (5 x02) + (6 x 10) + (9 x 1).

f. 3,981 = (3 x0) + (9 x 102) + (8 x 10') + (1 x 10").

If two O's appear in the same open sentence, each 0 is to be filled by a name

for the same number.

g. 6,343 = (6 x 1,000) + (Dx 100) + (4 x 10) + (Dx 1).

h. 54,649 = (5 x 10') + (0 x 10') + (6 x 10') + (0 x 10') + (9 x 10").

1. 34,162 = (3 D) + (4 x(71.2) + (1 xp) + (6 x0') + (2 x0").

5. Examine a pupil's work below:

36
+ 27
513

Show how the use of an expanded form could help the child arrive at a correct

standard numeral for the answer.

1

SUMMARY

We have examined our (Hindu-Arabic) system of numeration. A
child who understands our decimal numeration system can represent

any whole number quickly and conveniently. The system is built upon

a few basic ideas:

I. Base ten- group or count by tens: ten x ten, ten x ten x ten, etc.

2. A set of ten digits-0, I, 2, 3, 4, 5, 6, 7, 8, 9
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3. Place value
a) A number (place value) is assigned to each position in the

numeral.
b) Each digit represents a product the product of its value and the

place value assigned to the position occupied by the digit.

4. The idea that the value of a numeral is the sum of the products repre-
sented by the digits of the numeral

A system such as ours, which is based upon groups of ten, is called a
decimal system of numeration.

Thus, with the aid of ten symbols, the idea of place value, and the use
of addition and multiplication, all whole numbers can be represented.
We have seen that ancient systems used some of the basic ideas listed
above. It is possible, and in fact extremely useful for computers,
to develop systems of numeration that do not depend upon base ten.
Computers usually use base two because their circuits are often built
up from "two-state" switching devices. You might find it interest-
ing and challenging to modify ( I), (2), and (3) above and develop a
system of numeration based on groups of five (fingers on one hand),
five x five, and so on.



ADDITION AND ITS

PROPERTIES

1. What is meant by the union of a pair of sets?
2. How can the sum of whole numbers be defined in terms of sets?
3. What are some properties of addition?
4. What does an expression such as "2 ± 3" maan?

Do you know a child who is able to do 623 821

the work shown at the right but who has + 108 - 538
731 283trouble with verbal problems? Imagine

that you have a pupil who has done the
work shown. Then imagine that you give
him the following problem: How many
seats are there in an auditorium in which
there are 15 rows of seats and there are

Z62
x 27

18
23 414

2,534 23
724 184

1849,774

12 seats in each row? Now suppose 12
he writes on his paper + 15

and says that the answer is 27. How do 27

you analyze his difficulties? Is he careless,
or does he lack an understanding of addition and multiplication? Isn't
it possible for a child to do the work shown at the upper right without
really understanding the meaning of the operations in mathematics?

You will, of course, agree that all the computational skills in
the world are not of much help if they aren't accompanied by under-
standing of the results. if a child knows how to multiply but not
when to multiply, his knowledge is rather useless.

The point we are driving at is that there is a difference between know-
ing the menning of addition and knowing how to carry out the related com-
putational process. Although it is possible to learn the latter by rote, it
is doubtful if any worthwhile educational objectives are attained in do-
ing so.
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In the following pages we shall try to make clear what .., e mean by
addition. Addition will be developed through the use of sets. We shall
see that we can then state certain principles or properties of addition as
a consequence of this development. These properties ultimately lead us
to the processes that we use in computation.

PRELIMINARIES TO ADDITIONUNION OF SETS

What do we mean when we speak of "adding 3 to 5"? Usually a
teacher in the primary grades explains by showing a set of 3 objects and
a set of 5 other objects. Upon joining the two sets, a new set of 8 ob-
jects is produced. Using physical examples of this kind is a good class-
room technique, but as a teacher you will want to understand
the mathematical ideas that underlie such physical examples.

A

Let's examine this situation and see if we can state precisely
what addition is al! about. Suppose we abide by convention and name
each of the original sets above with a capital letter. We might arbitrarily
call the set shown on the left in the picture, A, and the one on the right,
B. Then the set consisting of all the elements shown is called the union
of A and B and denoted A U B (read "A union B" ) .

Let's consider several more examples that illustrate the con-
cept of union:

I. If E is the set of all blonds in the class and F is the set of all red-
heads, then E U F is the set of all those in the class who have either
blond or red hair.

2. Suppose M is the set consisting of Bob and Joe and N is the set
consisting of Betty, Jean, and Mary. Using braces in the custom-
ary manner, we might write M = {Bob, Joe) and N = {Betty,
Jean, Maui. Then M U N . !Bob, Joe, Betty, Jean, Mary).

3. Let X be the set of states in the United States whose names begin
with "C"; that is, Y' --, {California, Colorado, Connecticut). Let Y be
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the set of states whose names end ,pith "t": that is. Y '=-- {Connecticut,
Vermont}. Then A' U Y = (California, Colorado, Connecticut, Vermont).

4. If P = {a, h, c} and Q = {a, c, e, g}, then P U Q = {a, h, c, e, 4.
You probably recognized that the last two examples differ from the

first two. In example 3, set X contains Connecticut and so does Y. But
Connecticut is not listed more than once in tabulating the elements in
the union. In 4, sets P and Q have two elements in common, namely,
a and c. Again these are listed but once in P U Q. We are thus saying
that the uri;on of any set A and any set B is the set consisting of all the
elements in A together with all the elements in B. Among the elements
included in the union are, of course, any elements that happen to be
common to A and B. However, an element of the union is listed but
once, regardless of whether it belongs to only one of the sets or to both.
This idea is briefly expressed as follows: "The union of sets A and B is
the set consisting of all those elements that are in A or in B." (As used
here, the word "or" does not exclude the possibility that an element of
the union might belong to both sets.) Notice that a physical act of join-
ing is not implicit in the concept of union of two sets. This is certainly
the case in example 3 above.

Exercise Set 1

Let A = (a, h, cl, B = (a, e, i, o, 4 C = (h, f, g), and D = lu, r, w, x, y, -.:).
Tabulate each of the following sets:

1. A U B

7 . B U A

*-t . A U C

4. B U C

5. A U D

6. (A U B) U C First determine the union of A and B, then the union of
that set and C.

7. A U (B U C)

8. B U 1 } Note:1 ) is the empty set, the set that has no members.

ADDITION

Returning now to the explanation of "adding 3 and 5," we can say
that the teacher selects a set A with 3 elements and a set B with 5 other
elements. We can write n(A) = 3 (read "the number of elements in A is
3") and n(B*1 = 5. The set consisting of all the elements in A as well as
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those in B is A U B. Then n(A U B) the number of elements in A U B----

is what we call the sum of 3 and 5. This sum is denoted by "3 + 5" (read
"3 plus 5"). And since by counting we find that n(A U B) is 8, we write

3 + 5 = 8.

In general, we would like to be able to say something like this: For
any two numbers a and b, we choose a set A that contains a elements
that is, n(A) = a ---and a set B with b elements that is, n(B) = b. Then
a + b = n(A U B). However, such a definition presents one difficulty.
Suppose we wish to dett _mine the sum of 3 and 5 and for our sets we
select A and B from the exercises above. Since A = la, b, c) and B =
{a, e, i, o, 4 clearly n(A) = 3 and n(B) = 5. Then A U B = {a, b, c, e,

o, 4 So n(A U B) = 7. But we would probably react unfavorably to

3 + 5 = 7.

Of course, you recognize that the difficulty stems from the fact that in
the latter example we selected sets that have an element in common.
When a teacher uses actual physical objects to demonstrate in class, this
problem usually does not arise; but it must be considered in stating a
definition. When two sets have no common elements, they are said to
be disjoint or mutually exclusive. The definition of a sum of 3 and
5 could then be stated as follows: Let A and B be disjoint sets such that
n(A) = 3 and n(B) = 5. Then 3 + 5 = n(A U B).

The definition of the sum of any pair of whole numbers is as follows:

If a and b are any whole numbers, let A and B be disjoint
sets such that n(A) = a and n(B) = b. The sum of a and b,
denoted "a + b," is n(A U B).

Notice the important role played by sets in defining a sum.
The sum a + b does not depend on the nature of the a elements which

comprise set A nor on the nature of the b elements which comprise set
B, sc, long as these two sets are disjoint.

The assignment of a sum to a pair of numbers is essentially what we
mean by addition.

Another approach to addition, one that is becoming popular
in modern mathematics programs, makes use of the "number line."

<I I I I 1 1 1 1 1 I I 1)
0 1 2 3 4 5 6 7 8 9 10 11

For example, the sum 3 + 5 can be interpreted as follows: Start at 0,
move 3 units to the right, and then move 5 units to the right:
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3 5

8

The result is the same as that of a single movement of 8 units
to the right. The advantage of starting at 0 is that the computed result
8 is immediately obtained by inspection of the number line.

Exercise Set 2

1. Tell what 7 + 2 means in terms of sets.

2. It is important to distinguish bc'ween the language and symbols
that apply to sets and the language anti symbols that apply to numbers.

If capital letters represent sets, which of the following are meaningless accord-

ing to the definitions we have given?

a. The union of M and N

b. The union of 6 and 5

c. 3 U 4

d. 7 + 6
e. n(E) U n(F)

f. P Q

g. n(P) + n(Q)
h. The sum of 8 and 3

i. The sum of R and S

j. E U F

3. Suppose A is a set such that n(A) = 5 and B is a set such that n(B) = 7.
If n(A U B) = 10, what can you say about sets A and B?

4. Is it possible to find two sets A and B for which n(A) + n(B) < n(A U B)?
Explain.
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5. Use a number line to depict the following sums:
a. 2 4- 4 b. 4 + 2 c. 5 + 1 d. 3 + 3

THE COMMUTATIVE PROPERTY OF ADDITION

The development of addition through the use of sets makes it pos-
sible to derive some of the characteristic properties of addition. The first
property to be discussed is exemplified by the statement

7 + 2 = 2 + 7.
This statement illustrates the commutative property of addition. Although
the fact that 7 + 2 = 2 + 7 is obvious to anyone familiar with addition,
it is not so obvious to the beginner. In fact, most first-grade children
will readily determine that 7 + 2 = 9 but will quite often have trouble
with 2 + 7. Consequently, the commutative property should be empha-
sized early in arithmetic. In general terms, the commutative property of
addition is stated as follows:

If a and b are whole numbers, then a + b = b + a.

Because of this property, we say: "Addition is commutative."
We can justify the commutative property by making use of the def-

inition of sum. Let us refer back to Exercises 1 and 2 in Set 1. You
were given that A = {a, b, c} and B = la, e, i, o, uI. So you might have
written

A U B = {a, b, c, e, i, o,u}.
BUA = la, e, i, o, u, b, cl.

But no matter how you wrote things down, A U B and B U A contain
exactly the same elements. We thus write

AUB=BUA.
It isn't hard to see that this is true for any sets A and B. The set of an
elements to be sound in either A or B (including, of course, any e-
ments that may be common to both) is the same as the set of all ele-
ments in B or in A (or in both).

From the fact that, for any sets A and B,AUB=BUA, the com-
mutative property of addition follows. To verify, for example, that

7 + 2 = 2 + 7,
we select a set A with 7 elements and a set B disjoint from A with 2
elements. Then 7 + 2 = n(A U B) while 2 + 7 = n(B U A). But since
AUB= BUA, it follows that n(A U B) = n(B U A) and therefore
7 + 2 = 2 + 7. In general terms, if a and b are any two whole number,;,
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we select disjoint sets A and B such that n(A) = a and n(B) = h. Then

a + h n(A U B) and h + a = n(B U A). Again we have

AUB.BUA,
from which it follows that

n(A U B) = n(B U A),

and thus
a + h h + a.

With children in the elementary grades, this property might be ex-

pressed with frames:

When working with such frames, it is agreed that the same number is to

be used for a frame of a particular shape wherever that shape appears

in a given sentence.
The importance of this property becomes more and more evident as

a child advances in school. However, the primary teacher should realize

that the simple fact that it greatly reduces the memorization task faced

by the pupil is reason enough for stressing the commutative property

early. as*

THE ASSOCIATIVE PROPERTY OF ADDITION

There are other important properties of addition, and these also can

be used by a child early in his study of arithmetic. Some children, when

asked what is the sum of 8 and 7, will think as the boy does in the pic-

ture below:

8 + 7 = 0.

This boy is tacitly making use of a grouping idea that mathematicians
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call the associative property of addition. He is thinking of 7 as 2 + 5
and then reasoning that

8 + (2 + 5) = (8 + 2) + 5.
The general statement of the associative property would be:

If a, b, and c are whole numbers.
then (a + b) + c = a + lb + c).

Because of this property, we say: "Addition is associative." Again, the
relationship can be justified by using the definition of sum. In Exercise
Set 1, examples 6 and 7, you should have found that

(A U B)UC=AU (B U C).
You see that this would be true for any sets A, B, and C, because the
expression on either side of the equation represents the set of all ele-
ments ".1 A or in B or in C. Now, given any numbers a, b, and c,
we car, choose sets A, B, and C with no elements in common so that
n(A) = a, n(B) = b, and n(C) = c. Then

nI(A U B) U Cl =n(A U B) + n(C) = (a + b) + c,
and

nIA U (B U C)I =n(A) + n(B U C) = a + (h +c).
Therefore,

(a +b) + c = a + (b c).
This too might be expressed with frames:

Because of the associative property, no ambiguity results if paren-
theses are omitted from an expression for a sum. For example, since

(5 + 3) + 9 = 5 + (3 + 9)
we could write

5 + 3 + 9
to represent either expression. Note, though, that this is not always the
case in mathematics. Consider division. Notice that

while
(24 + 6) ÷ 2 = 4 ÷ 2 = 2

24 ÷ (6 ÷ 2) = 24 ÷ 3 = 8.

Since
(24 ÷ 6) ÷ 2 * 24 ÷ (6 ÷ 2),

division is not associative and we don't write 24 ÷ 6 ÷ 2 without some
agreement as to grouping.

41



Mathematics for Elementary School Teachers

Children might refer to the commutative and associative properties
simply as the "order" and "grouping" properties.

Often the commutative and associative properties can be used
together advantageously. For example, in computing 7 + (9 + 3), it is
easier if 3 is grouped with 7; but this involves reordering and regrouping
(whether we actually write it down or not):

by the commutative property of
addition

by the associative property of
addition
because 7 + 3 = 10, and

because 10 + 9 = 19 by our sys-
tem of numeration.

7 + (9 + 3) = 7 + (3 + 9)

= (7 + 3) + 9

= 10 + 9

= 19

When you tell a child to "check by adding up," you are utilizing both
properties. Consider, for instance, the units column in the example below:

27
54
32

Working downward, we must think of the sum (7 + 4) + 2. Working up-
ward, we have (2 + 4) + 7. We know they are the same because of the
commutative and associative properties:

(7+ 4)+ 2 = 2 +(7 +4)

= 2 +(4 + 7)

.(2 + 4)+ 7

addition is commutative (7 + 4 is
interchanged with 2)

addition is commutative

addition is associative.

To compute the sum of 23 and 45, some children think "23 + 40 is 63,

and 63 + 5 is 68." Let's analyze this. First,

25 + 45 = 23 + (40 + 5) because 45 = 40 + 5 by our sys-
tem of numeration

= (23 + 40) + 5 addition is associative.

Now to determine that 23 + 40 = 63 (or 60 + 3) we reason:

23 + 40 = (20 + 3) + 40 because 23 = 20 + 3 by our sys-
tem of numeration

= 20 + (3 + 40) addition is associative

= 20 + (40 + 3) addition is commutative
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= (20 + 40) + 3 addition is associative

= 60 + 3 because 20 + 40 = 60.

If we then replace 23 + 40 by 60 + 3 in the expression (23 + 40) + 5,

we have

(23 +40) +5 = (60 +3) +5
= 60 +(3 + 5) addition is associative

= 60 + 8 because 3 + 5 = 8

= 68 because 60 + 8 = 68.

After some work of this sort, one usually becomes convinced that the
commutative and associative properties justify rearranging (in any man-

ner we choose) the terms in an expression for a sum. This can indeed

be shown to be the case. Although we don't intend to present a detailed
proof, we shall feel free to use the rearranging idea for addition hence-
forth. For example, we might say that

1(7+ 1) + (4 + 9)1 + (3 + 6) = (7 + 3) + 1(9 + 1) -4- (6 + 4)1

by the commutative and associative properties. Moreover, since it does

not matter in a sum how the numbers are grouped, nor how they are

ordered, grouping symbols may be omitted and computation may be
carried out in any order.

Exercise Set 3

1. Identify the property exemplified by each of the following:

a. 7 + 9 =

b. (2 + 3)

9 + 7.

+ 8 = 2 + (3 + 8).

c. (4 + 7) + 1 = (7 + 4) + 1.

d. (2 + 9) + (3 + 1) = (3 + 1) + (2 + 9).

e. 6 + (4 + 9) = (6 + 4) + 9.

t. 6+(5+4).(5+4)+6.

2. Show how the associative and/or commutative properties can be used to

simplify the computation of these sums:

a. 7 + (3 + 6)

b. 8 + (5 + 2)

c. (4 + 9) + I

43--
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d. 17 4 (28 + 3)

it. (16 + 7) + (3 + 4)

3. Suppose that a * b means "2 times the sum of a and b." Examples:

1 5 = 12.

4 0 = 8.

3 7 = 20.

a. Is the operation denoted by "a" commutative? How would you justify

your answer?

b. To compute (2 * 3) * 4, we first compute 2 * 3. Since this is 10,

(2 * 3)* 4 = 10 * 4 = 28.

Compute 2 * (3 * 4).

c. Is the operation denoted by "a" associative? Explain.

THE ADDITION PROPERTY OF 0

In Exercise 8 of Set 1, on page 36, you should have found

that B U{ = B. Since the empty set has no elements. the union of any

set A with the empty set will be A: that is,

AU{ } = A.

This leads to another important property of addition involving

the number 0. For any number a, we can select a set A with a elements.

Now { } is a set with no members, and it clearly has no elements in

common with any other set. By the definition of sum,

a + 0 = n(A U 1).

But if

then

so

AU{ } = A,

ri(A U I) = n(A),

a + 0 = a.

We shall call this the addition property of 0. Because the number
0 behaves in this special way, it is called the identity element for addition

or the additive identity. The identity element is also called the neutral

element. 44



Addition and Its Properties

It should be clearly understood that 0 is a perfectly good mun-
ber. "Zero" does not mean "nothing"!

Exercise Set 4

1. There are 100 addition "facts" from 0 + 0 = 0 up to 9 + 9 = 18 that
children are expected to memorize. If a child learns the commutative property
and the addition property of 0. how many essentially different facts are there?

2. Explain the meaning of a < b in terms of addition. (Assume that a and b
are whole numbers.)
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MULTIPLICATION AND

ITS PROPERTIES

1. How can the meaning of the product of two whole numbers be

conveyed
a) through disjoint sets?
b) through cross products of sets?
c) through arrays?

2. What are some properties of multiplication?

3. What does an expression such as "2 x 3" mean?

If you, an adult, are asked to multiply 3 and 2, you will quickly think

of 6. Probably you will not bother to think of how the 6 is determined;

you know it too well to need to think about it. But children don't know

anything about multiplication until they learn from adults. How should

children be taught that 6, rather than some other number, is the product

of 3 and 2?
More generally, the question we need to ask and answer for children

is "What does multiplication mean?"
In a previous section we discussed a similar question about addition.

Briefly, we recall that-

1. By the sum of 3 and 2 (that is, 3 + 2) we mean the number of ele-

ments in the union of a set of 3 members and another set (disjoint from

the first) with 2 members. By actual count we find that the number of

elements in the union is 5. Hence, 3 + 2 = 5.

2. With a pair of whole numbers (addends), addition associates a

whole number (their sum).
Multiplication can be handled in a similar manner. We shall see that
!. The meaning of a "product" (such as 3 x 2) can also be revealed

through the use of sets.
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2. With a pair of whole numbers ("factors"), multiplication associates
a number (their "product").

Various approaches to multiplication are possible. Some newer pro-
grams employ the crass product because of certain advantages it has
over more traditional approaches.

CROSS PRODUCT

Consider this situation: A man is going to eat a sandwich. He has a
choice of hamburger, salami, or tuna. After eating the sandwich, he will
drink either coffee or milk. What are all the combinations of sandwich
and beverage he may choose? Remember, he is going to eat the sand-
wich first, then drink the beverage.

Here are all the possibilities:
(hamburger, coffee) (salami, coffee) (tuna, coffee)
(hamburger, milk) (salami, milk) (tuna, milk)

We may think of all these possibilities as forming a set. This set has
pairs for its elements, and the set has six of these pairs. For example,
the pair (hamburger, coffee) is a single element of the set.

What is the mathematical significance of the above situation?
We are given two sets: a set of sandwiches,

{hamburger, salami, tuna},

and a set of beverages,
{coffee, milk).

From these two sets we determine a third set (a set whose elements are
pairs made of elements of the two given sets):

{(hamburger, coffee), (hamburger, milk),
(salami, coffee), (salami, milk),

(tuna, coffee), (tuna, milk)).

In general terms, we may say that from any two sets we can deter-
mine in the same way a set of pairs. The set of pairs is called the cross
product of the given sets. We use the symbol x between the given sets
to name the cross product:

{hamburger, salami, tuna} xlcoffee, milk) =
{(hamburger, coffee), (hamburger, milk),

(salami, coffee), (salami, milk),
(tuna, coffee), (tuna, milk)).

Let us abbreviate this rather lengthy sentence by writing h for ham-
burger, s for salami, t for tuna, c for coffee, and in for milk. Then the
above sentence showing the cross product simply becomes
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s, {(h, c), (h. in), (s, e), (s, (t, (t, 101.

Using this example as a guide, we can now write a definition of the
cross product of any two sets:

The cross product of two sets is the set of all possible pairs
whose first member comes from the first set and whose
second nzeinber comes front the second set. If the
first set is named A.- and if the second set is named -B...
then the cross product is named X B.

Several comments about this definition are in order.
1. The symbol "x" is read "cross." Thus, "A x B" is read "A cross

B." The cross "X" does not denote ordinary multiplication. Ordinary
multiplication applies to numbers, not sets.

2. The pairs in the cross product are ordered pairs. That is, of the two
members of the pair, one comes first, the other second. In our example.
the pair (h, c) is an element of the cross product fh, .r, m}, but
the pair (c, h) is not. Of course, we could have formed the reverse cross
product nqxth, s, This would be made of beverage-sandwich pairs
rather than sandwich-bm erage pairs. Then (c, h) would be an element
of this new cross product.

{c, mix th, s, = h), (c, s), (c, t), (in, h), (nz, s), (in, t)).

3. Each pair in the cross product is considered a single element.
Thus the set {(h, c), (h, (s, c), (s, (t, c), (t, in)} has 6 elements.

Before developing multiplication by means of cross products, we pre-
sent some exercises on cross products. Work these exercises before pro-
ceeding.

EXAMPLE: If a baseball team has 4 pitchers (Olson, Davis, Gates,
and Foley) and 2 catchers (Shafer and Miller), what are all the pitcher-
catcher combinations?

SOLUTION: There are 4 pitchers from
which to choose. For each choice of
a pitcher, there are 2 choices for the
catcher. All the possible choices can
be pictured on a "tree" diagram:
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So all the pitcher-catcher combinations are as follows:

(Olson, Shafer)
(Olson, Miller)
(Davis, Shafer)
(Davis, Miller)

Exercise Set 1

(Gates, Shafer)
(Gates, Miller)
(Foley, Shafer)
(Foley, Miller)

.
1. imagine an election in which there are 4 candidates for governor

(call them a, b, c, and d) and 3 candidates for lieutenant governor (call them
e, f, and g). List all the possible combinations of candidates from which the
voters can choose.

2. Given the sets (a, b} and (r, s, 1, ul, list the members of the cross product
(a, bl x tr, s, t, ul.

3. If set A = Ix, A and set B = (r, s, II, list the members of the set A X B.
List the members of the set BXA. Is A XB the same set as B X A? Is A X B
equivalent to B X A?

4. In problem 3, what is n(A)? n(A X B)? n(B X A)?

Problem 1 in the exercises above asks you, in effect, to form the cross
product of set (a, b, c, dl and set le, f, gl. Your answer should be

((a, e), (a,./), (a, gl, (b, e), (b, .1), (b, g),
(c, e), (c, J), (c, g), (d, e), (d. .1), (d, g)I.

Counting the elements of each of these sets, we find that the cross
product of a set of 4 elements and a set of 3 elements has 12 elements.
It is immaterial what objects are denoted by a, b, c, d, e, f, or g. The
cross product of any set of 4 elements wish any set of 3 elements will
always contain 12 elements. This observation enables us to assign
a meaning to "4 x 3," using sets; 4 x 3 is simply the number of elements
in the cross product of a set of 4 elements and a set of 3 elements, thus
making 4 x 3 = 12.

Problem 2 above asks you to form the cross product of a set of 2
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elements and a set of 4 e, rents. That cross product contains 2 x 4 ele-
ments. By counting we fir:d that this cross product has 8 members, thus
making 2 x 4 = 8.

Cross products helped us to determine the number 12 from 4 and 3,
and 8 from 2 and 4. So we have a way of determining a number called
a "product" from a pair of given numbers. Understanding what is meant
by product is the key to understanding multiplication.

Ifa and b are whole numbers, let A and B be sets such that
n(A) = a and n(B) = b. The product of a and b, denoted
by "a x b," is n(A x B), that is, the number of elements in
set A x B. (We often write "ab" instead of "a x b"; and we
call a and b factors of ab.)

The product a x b does not depend on the nature of the elements
comprising set A, nor on the nature of the elements comprising set B.

The assignment of a product to a pair of numbers is essentially what
we mean by multiplication.

How are products found? What is the product of 3 and 5, for example?
According to the meaning we have just given to product, we should find
a set containing 3 elements and a set containing 5 elements. (Any sets
of 3 and 5 will do.) Then we should consider the cross product of these
sets and count the elements of the cross-product set. The number of ele-
ments in the cross-product set will be 3 x 5, the product of 3 and 5.
Accordingly, let us choose the sets

R = {x, y, z).
S = la, e, i, o,

Since n(R) = 3 and n(S) = 5, we have the kind of sets we want. Now

R xS = 1,(x, a), (x, e), (x, i), (x, o), (x, u),
(y, a), (y, e), (y, i), (y, o), (y, u),
(z, a), (z, e), (z, i), (z, o), (z, u)I.

Counting shows that n(R x S) = 15. Therefore, 3 x 5 = 15. We have
proved that 15 is the product of 3 and 5. The proof rests upon the mean-
ing we have given to product.

We have talked at length about both sets and numbers. How-
ever, multiplication itself deals only with numbers: with every pair of
numbers multiplication associates their product, a number. The role of
sets is to provide a means by which a product can be computed.

The scheme whereby we use sets to obtain a product may be
diagramed as follows:
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THE WORLD OF WHOLE NUMBLRS

Multiplication and Its Properties

THE WORLD OF SETS

Sian

Count the members of A x B
to obtain n(A xB). The
number n(A xB) is the
product a x b.

Finish

Choose two sets, A and 8,
such that n(.4) = a.
n(B) b.

/1:orm the cross product,
A x B.

You see that multiplication begins and ends with numbers. This com-
pletes our discussion of one way in which sets may be use:.! o explain
multiplication. After the next exercise set, a second way will he presented.

Ex tMPLE: Mr. McCarthy travels from New York City to Chicago
by either airplane, railroad, or bus. He travels from Chicago to Milwau-
kee by either bus or car. In how many ways can he travel from New
York City to Milwaukee?

SOLUTION: For each of the three w ays from New York City to
Chicago, Mr. McCarthy can choose one of tw o ways from Chicago to
Milwaukee. So each trip is an ordered pair. The set of these ordered
pairs is the follow Mg:

{(airplane, bus), (airplane, car), (railroad, bus),
(railroad, car), (bus, bus), (bus, car))

So Mr. McCarthy can travel from No% York City to Milwaukee in six
ways.

Exercise Set 2

1. A girl owns a red blouse, a white blouse, a brown skirt, a black skirt, and
a white skirt. How many combinations of blouse and skirt can she wear? What
are they?
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2. What multiplication sentence should accompany this sentence?

la, bl x {x, yl = Ka, x), (a, y), (b, x), (b, y)).

3. If n(A) = 4 and n(B) = 5, what is n(A x B)?

ti., 10N OF DISJOINT EQUIVALENT SETS

Unions of disjoint sets are used to develop a meaning for addition of
whole numbers. Let us recall that

The union of two sets is the set of elements in either or both
of the two sets. The union of sets A and B is named "A U B."
More generally, the union of any collection of sets is the set
consisting of all those elements which are members of at
least one of the sets in the given collection. (The union of sets
A , B, and C may be named "A U B U C.-)

Two sets are disjoint if and only if they have no elements
in common.

Two sets are equivalent if and only if they can be matched
(by a one-to-one correspondence). Equivalent sets have the
same number of elements. If two sets are not equivalent.
then they do not have the same number of elements.

If we form the union of several sets, every two of which are disjoint
and equivalent, then we have a special situation that deserves attention.

Where might such a situation arise? Consider the following question:
If a flock of chickens lay 6 eggs every day for 7 days, how many eggs
are produced altogether?

Analyzed in terms of sets, the question states that a set of 6
eggs is produced every day for 7 days. The union of these 7 sets, all dis-
joint, is the set of eggs obtained after the 7 days have passed. So the
total number of eggs is the sum of the numbers of the daily sets of eggs.
That is, the total number of eggs is

6 + 6 + 6 + 6 + 6 + 6 + 6,
or 42.

Such situations can always be analyzed using addition. However, it
is clear in this example that the number of sets of 6 eggs, namely 7, is
important. In some way, the numbers 6 and 7 determine their "product"
42.

Examples of the above type have always been used by teachers to in-
troduce multiplication. They suggest another meaning we can give to
product:
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Let a and b be whole numbers. Choose a sets, disjoint from
each other, with b elements in each. Then the number of ele-
ments in the union of the a sets is a x b, the product of a and b.

How can a product such as 3 x 5 be computed if we use this
approach? We should choose, 3 sets, with 5 elements in each, making
sure that each is disjoint from the others. We then consider the un.
of the sets and count the elements in the union. The number of mem-
bers in the union will be 3 x 5, the product of 3 and 5. Accordingly,
let us choose these sets:

E = {a, b, c, d,
F= i,j, k, I, ml.
G= fr, s, 1, u, v).

The union, EU FU G, is

{a, b, c, d, e, i,j, k, I, m, r, s, t, u,

Counting shows the number of elements in this union to be 15. There-

fore, 3 x 5 = 15.
As in the case of cross products, we have now provided a scheme for

determining a product from any pair of whole numbers. Again, the sole
role played by sets is to provide a means by which a product can be
computed from its factors. This scheme can be diagramed as follows:

THE WORLD OF WHOLE NUMBERS THE WORLD OF SETS

Start

Count the elements of
the union; its number is
the product a x b.

Finish

Choose a sets, b elements
in each, with each set disjoint

from the others.

Form the union of the
a sets.
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Again %%e have seen that multiplication begin., and ends %%ith numbers.
This ..:ornpletes the discussion of a second,way in which sets can be

used to develop multiplication. The next section will show that
,. The two methods yield the same product for any pair of factors.
2. Both methods are useful in the classroom.

Exercise Set 3

1. What multiplication facts do these pictures illustrate?

a.

b.

c

4x =

x

x =

o

2. Choose some disjoint equivalent sets to illustrate the fact that 2 x 4 = 8.

3 + 3 +3 + 3 + 3 + 3 = 18. x 3 =
b. 1 + 1 + 1 + 1 = 4. x =

c. 0 + 0 + 0 = O. 3x _=
d. 6 + 6 + 6 + 6 + 6 + 6 = 36. x _ =
0. 2+2=4. x_ =

5-54--

2. Choose some disjoint equivalent sets to illustrate the fact that 2 x 4 = 8.
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4. In the following problem should we find the sum or the product of the two
numbers? Why?

John bought 3 quarts of milk at 24¢ each. How much money did he spend?

TEACHING MULTIPLICATION

Both approaches to multiplication, through cross products and
through unions of disjoint equivalent sets, should be presented to chil-
dren. Why?

Here are two problems that a child might be asked to solve in the
third or fourth grade:

(1) Jim planted 3 rows of corn, using 8 seeds in each row. How
many seeds did he plant?

(2) If 3 children play trumpet and 8 other children play piano, how
many trumpet-piano duos can be formed?

Each of these problems is solved by multiplying 3 and 8 to obtain
24. But each requires its own kind of thought process. A child will prob-
ably see the problems as entirely different, yet children need to learn
to recognize both as multiplication problems. The two approaches we
have discussed are appropriate to these two types of problems.

However, although these are two approaches to multiplication
of whole numbers, they do not give different products. We present, as
evidence that both yield the same result, a simple problem analyzed
throush both approaches.

PROBLEM: Compute the product of 3 and 4.

CROSS PRODUCT

Choose two sets, one of 3 ele-
ments, the other of 4 elements. The

sets {a, b, cl and {w, x, y, z} will do.

Arrange the elements of these
sets vertically and horizontally in a
table and form the cross product:

a
b
c

w x y z
a, w I a, x a, y a, z
h, w b, x b, y b, z
c, w c, x c, y c, z

UNION OF DISJOINT
EQUIVALENT SETS

Choose three sets, disjoint from
each other, with 4 elements in each.
The sets {a, b, c, 411, j, k, 1), and
{m, n, o, p} will do.

Arrange the elements of these
sets in horizontal rows, in a table,
and form their union:

55

e b c d
i.% k 1

m n o
I



Mathematics for Elementary School Teachers

Observe that to count this cross
product, we need only count the
places in the table:

w x y z

a
b

Observe that to count this union,
we need only count the places in
the table:

Both these approaches lead to the same result: a rectangular array
of places that we are to count to find a product.

An array that has 3 rows and 4 columns (rows are horizontal, columns
are vertical) is called a "3-by-4 array."

3 rows /

4 columns

This, a 3-by-4 array represents the product 3 x 4, regardless of which
vproach t) product we use. Of course, any 3 x 4 array will do:

* * * * 0000 x x x x
* * * * or 0000 or x x x x etc.
* * * * 0 0 0 0 x x x x

Arrays are well suited to introducing multiplication to younger chil-
dren. Later on, when problems like (2) on page 55 come up, an explicit
presentation of cross products will also be helpful. When problems like
(1) on page 55 come up, unions of disjoint equivalent sets can be
presented.

In this text, we shall find arrays useful for deriving various properties
of multiplication.

EXAMPLE: Compute the product of 6 and 2 by means of an array.

SOLUTION: Draw an array with 6 rows and 2 columns:

o o

o 0

O 0

O 0

O 0

O

There are 12 elements in this 6-by-2 array, so 6 x 2 = 12.
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Still another approach to multiplication uses the number line. The
expression "3 x 2" is interpreted as 3 "jumps" of 2 units each.

4-i---: -----r--- Thii 1 it, I 1 >0,,, I 2 3 4 6 7 8

This :;;:erpretation is evidently equivalent to repeated addition on the
number line.

Exercise Set 4

1. Write a multiplication sentence for each of these arrays:

a. * * * * * b. 3 0 19 e
* * * * * 019 410 0 0
* * * * * 0 0 CS 00 0 0 00 0 0 0

x____=____

2. Draw an array for each of these sentences:

a. 3 x 2 = 6. b. 6 x 1 = 6. c. 4 x 7 = 28.

3. Use a number line to depict the following products:

a. 3 x 4 b. 4 x 3 c. 5 x 1

PROPERTIES OF MULTIPLICATION

Consider this 6-by-9 array of dots:

6 rows

4

9 columns
This array contains 6 x 9 dots.

Now consider a 9-by-6 array of dots.
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9 rov s

f
Ili

6 columns

This array contains 9 x 6 dots.
Of the two arrays above, either could be "tipped" to coincide with

the other. They contain the same number of dots. So
6 x 9 = 9 x 6.

There is nothing special about this example. Any rectangular array
can be tipped so that its rows become columns and its columns become
rows without affecting the number of elements.

0

0

0

0

0

0

2 x 5

0

0

0

0 tip
0

0

0

0

0

0

0

0

0

0

2x5= 5x2. 5 x 2

These examples are instances of a general property of multiplication,
the commutative property:

For all whole numbers a and b, a x h = b x a.

To express the commutative property of multiplication in a form suit-
able for young children, "frames" arc valuable. Children may be
encouraged to fill in the frames in sentences like these:

8 x 0 = 0 x 8. Ax 7 = 7 xA.
.Axo=ox L.

The same number is to be used with a particular frame wherever that
frame appears in a single sentence. Children will discover that any num-
bers make x 0= OxLa true statement:

A x 6 = 6 x / 3 \ : ,& x W =

kxra =Iiix; etc.
58
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The most obvious advantage of introducing the commutative
property of multiplication in elementary school is that it reduces con-
siderably the number of multiplication facts a child must learn. A less
obvious, but far more important, advantage is that this commutative
property is part of the basic structure of the whole-number system, and
of other number systems.

Another important property of multiplication can be demonstrated
by looking at a rectangular stack of blocks in two different ways.

Think of this stack as being composed of horizontal layers or of vertical
slabs:

The number of blocks
is 2 x (3 x 4).

The number of blocks is
4 x (2 x 3) or (2 x 3) x 4

because multiplication is commutative.

So the number of blocks in the stack can be named in two ways:
2 x (3 x 4) and (2 x 3) x 4.

Therefore,
2 x (3 x 4) = (2 x 3) x 4.

Evidently, it makes no difference when we multiply whether we associate
the 3 with the 4 or with the 2.
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A stack of blocks, or 3-dimensional array, of any size, can be viewed
in these two ways. Consider, as a second example, the pictures below:

The number of blocks
is2x(7x5)
or (7 x 5) x 2

because multiplication is commutative.

So (7x5)x2.7x(5x2).60

The number of blocks
is 7 x (5 x 2).
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These examples are not sufficient to prove anything, but they suggest
a generalization. This generalization is the associative property of
multiplication:

For all whole numbers a. b. and c. a x (b x c) . (a x b) x c.

Thus, like addition, multiplication is both commutative and associative.
The associative property of multiplication is important both as

a building block in the structure of whole numbers and as an aid in
computation. If we want to compute the product of 2 and 30, for ex-
ample, we may reason as follows:

2 x 30 = 2 x(3 x 10) because 30 = 3 x 10

= (2 x 3)x 10 because multiplication is
associative

= 6 x 10 because 2 x 3 = 6

= 60 because 6 x 10 = 60.

Or suppose we want to compute the product (63 x 4) x 25. An appli-
cation of the associative property makes it easy:

(63 x 4)x 25 = 63 x(4 x 25)
= 63 x 100
= 6,300.

Often, the commutative and associative properties are both used in a
computation. To compute the product 24 x 5, for example, we might
reason as follows:

24 x 5 = (2x 12)x5

= (12 x 2) x 5

= 12 x(2 x 5)

= 12 x 10

= 120

because 24 = 2 x 12

because multiplication
is commutative

because multiplication
is associative

because 2 x 5 = 10

because twelve tens = 120.

The commutative and associative properties, used together, make it
possible to rearrange factors in any order or in any grouping without
affecting the product. No parentheses are needed in an expression for a
product. For example, the expression 2 x 9 x 5 x 7 is not ambiguous;
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the product can easily be computed by first multiplying 2 by 5, then 9
by 7, then 10 by 63, thus obtaining the following equalities:

2x 5 = 10.

9 x 7 = 63.
10 x 63 = 630.

Exercise Set 5
1. Use the commutative property of multiplication and complete

true statements:

a.0x 8 = 8x9.
b. 4x0= 17x4.

c. 67x0 =87x67.

d. 0 x L. 17 x 13.

a. (Eix 6)x 7 = (6 x 9)x 7.

f. (16 x 35)xEl= 12 x(I6 x 35).

to make

2. Use the associative property of multiplication and complete to make true
statements:

a. ( x6)x7 = 5 x(6 x7).

b. (8xt)x9 = 8 x(9 x 9).

c. 16 x(Ox 4) = (16 x 8)xL\

Compute these products quickly with the help of the commutative and
associative properties:

a. (67 x 50) x 2 =

b. (5x I3)x 2 =
c. 8 x 7C0

4. Complete these to make true statements:

a. (16 9) 3 3 =

16 (9 3) = 16

b. 18 (7 4) = 18

(18 7) 4 = 4 =

c. Do you think subtraction is associative?

THE NUMBERS 0 AND 1

The numbers 0 and 1 play special roles in multiplication.
What kind of array represents the product 5 x 1?
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5 rows *

1 column

What kind of array represents the product I x 5?

A 1-by-5 array: 1 row f, _** * * *
5 columns

Counting these arrays shows that 5 x 1 = 5 and 1 x 5 = 5. We could
have computed 6 x 1, 1 x 6, 3 x 1, 1 x 3, etc., in the same way. Evidently,
when 1 is used as a factor, the product is the other factor. In general
terms,

Whenever b is a whole number.
bxl = b and I x b = b.

This states what is often called the multiol:cative property of I. The num-
ber 1 is called the identity element for multiplication. It is also sometimes
called the neutral element for multiplication.

Notice that 1 plays the same role in multiplication that 0 plays
in addition.

3 x 1 = 3; 1 x 75 = 75;
3 + 0 = 3; 0 + 75 = 75; etc.

The multiplicative property of 1 is another of the important building
blocks of whole-number system. It is particularly important when
computing with fractions. However, there is value in knowing that 19 of
the usual 100 multiplication facts have 1 as a factor.

The number 0 plays a role in multiplication that has no counterpart
in addition.

If we attempt to illustrate the product 5 x 0 with an array, we need
an array with 5 rows and 0 columns. Since this is difficult to visualize,
let us use the cross product to analyze 5 x 0. We choose a set of 5 ele-
ments, say ta, b, c, d, el, and a set of 0 elements the empty set, { }.

We now wish to form pairs with one member from {a, b, c, d, e} and the
other member from I. But there are no elements in to use;
so no pairs can be formed. Therefore, the cross product of {a, b, c, d, e}
and { I will have no elements.

la, b, c, d, x } = { } .
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What can we conclude about 5 x 0? If 5 x 0 is to be the number of the
cross product we formed, we must have

5 x 0 = 0.

If we had analyzed 0 x 5, the result would have been the same:

{ }xia, b, c, d, e} ={ }, so

0 x 5 = 0.

In fact, the product of 0 and any number can be analyzed this way.
We conclude the following:

Whenever b is a whole number,
bx0=0 and Oxb= O.

Children can be introduced to this multiplicative property of 0
by completing sentences such as these:

0 x 0 = 0; 3 x 0 = O; El x ,L = 0; etc.

AN IMPORTANT MULTIPLICATION PROPERTY INVOLVING ZERO

Under what circumstances could a product of whole numbers
be zero? If a and b are whole numbers and we are told that
their product, a x b, is zero, what can we say about the factors a and b?

In terms of arrays we interpret a product a x b to be the number of
elements in an array having a rows and b columns. If neither a nor b
is zero, such an array will surely have at least one member. That is. if
a # 0 and b # 0, then a X b # 0. It follows logically that the only way a X b
could be zero would be if either a or b (or possibly both) were zero.

If a x b = 0, then a = 0 or b = 0 (or both a and b equal zero). This
important principle applies not only to whole numbers but to larger
classes of numbers as well (for example, fractional numbers). It is used
extensively in solving equations.

Exercise Set 6

1. Complete these to make true statements:

a. 7x0= O.

b. 0 x 6 = 0.

c. 75 x ED = 75.

d. D x I= 10.

e. 1x0 =0.

f. nx7=0.

2. What numbers make these true statements?

II. 0x1 =0.
b. 0 x 0 = O.

c. D. 0 = D.
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3. Compute these products. quickly. Which properties did you use?

a. 3 x 7 x 85 x 0 x 96 =______.

b. 576 x 1 =

c. (75 75) x 37 =

4. If the commutative property and the multiplicative properties of 1 and 0
are used, which facts in this table need to be memorized?

x 0 I 2 3 1 4 5 6 1 7 1 8 i 9
0 0 0 0 0 0 0 0 0 0 0
I 0 I 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18

3 l 0 3 6 9 12 15 18 2I 24 27
4 0 4 8 12 I6 20 24 28 32 36
5 0 5 I0 I5 20 25 30 35 40 45
6 0 6 I2 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
8 0 8 16 24 32 40 48 56 64 72
9 0 9 18 27 36 45 54 63 72 8I

SUMMARY

Some children's language is suggested below for some of the ideas
we have presented.

ADULT LANGUAGE

Ordered pairs

Union of 3 sets of disjoint
equivalent sets of 5
elements each

Commutative property

Associative property

Multiplicative property of I

Multiplicative property of 0

CHILD LANGUAGE

Pairs

Union of 3 sets of 5

Order property

Grouping property

Using I as a factor (or, multiplying
by 1 :fives the same number)

Using 0 as a factor (or, zero times
any number gives zero)
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The approach and language of this lesson have been adult. Children
need not be so careful about definitions and properties, nor need they
use such exact language.

It is important to avoid teaching mathematics as a vocabulary
exercise. The idea of multiplication and its properties can be presented
to children at their level.
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SUBTRACTION
8

1. How can subtraction be explained
a) Through the use of sets?
b) Using ideas of addition?

2. What does an expression such as "5 3" mean?

3

Have you ever given your pupils subtraction exercises and toki
them to check by adding? Perhaps one of the e;.eicises was

46
-- 19

If a pupil thought the answer was 27, he was supposed to check by add-
ing 27 to 19. He hoped to obtain 46 if his answer to the subtraction ex-
ercise was correct.

27
+ 19

46

That is, he added his answer (27) to the smaller of the numbers he was
given (19) and hoped to obtain the larger (46).

Evidently subtraction has some relationship to addition. What is this
relationship? How should it be presented to children? What are the con-
sequences of this relationship? This chapter will explore these and other
questions.

The relationship just mentioned concerns the very meaning of sub-
traction. We teach children that "seven minus three equals four," but
we also need to teach then why. If a child says, "Seven minus
three equals fiw-3," we must be able to show him why he is wrong. In
other words, we must convey the meaning of subtraction to children.

EXPLAINING SUBTRACTION

Let us recall briefly how addition is usually defined in the new
mathematics programs. Pupils are first shown how to find the union of
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two disjoint sets. Later they learn that the number of elements of such a
union is called the sum of the numbers of the two sets. Certain prop-
erties of addition (such as the commutative property) are then deduced
from the definition.

Subtraction may be based on sets also, by using the notion of a sub-
set. However, even when subtraction is defined in terms of sets, it quickly
becomes apparent that subtraction is related to addition. Thus the
meaning of subtraction can be approached in two ways: (1) in terms of
sets; (2) in terms of addition. As an illustration of the approach using
sets, let us consider the following situation. Mary's brothers are Mike,
John, Max, Bill, George, Frank, and Don. Designating the set of
Mary's brothers by A, we have

A = {Mike, John, Max, Bill, George, Frank, Don}.

Let us also consider the set of Mary's brothers whose names, as given
here, begin with "M"; call this set B.

B = {Mike, Max).

Since all the elements of set B are also elements of set A, we say set B
is a subset of set A.

Those brothers whose names do not begin with "M" form another
subset of A; call this subset C.

C = !John, Bill, George, Frank, Don'.

Now let us ask a simple numerical question such as might be
appropriate for early grades:

Mary has 7 brothers; only 2 of them have names beginning
with "M." How many other brothers does Mary have?

If a pupil lists sets A, B, and C as above, then to answer the question he
should count set C, the brothers whose names do not begin with "M."

Evidently, this example can be analyzed from two points of view:
1.. Set A and set B are given. Set B is a subset of set A. What is the

subset of A whose elements are not in B ? Set C.
2. A set of seven elements and one of its subsets consisting

of two elements are given. How many elements of the set of seven ele-
ments are not in this subset of two elements? Five.

We call this type of problem a subtraction problem. In it, we represent
the number of elements that are not in the given subset by "7 2"
(read "seven minus two"), and we refer to this number as the "difference
of 7 and 2." Because this difference is 5, we write "7 2 = 5." (Chil-
dren might, for example, remove two blocks from a set of seven blocks,
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then count the blocks remaining. They would write 7 2, or 5, to ex-
press the result.) We say that subtraction assigns to the pair of numbers
7 and 2 the difference 7 2, or 5.

Any problem about objects "remaining" or being "taken away" or
"left over" can be solved by subtraction, as indicated here.

One kind of problem often called a "comparison" problem fits the
subtraction pattern less obviously. Here is an example:

Eugene has 13 marbles; Hubert has 5 marbles. How many more
than Hubert does Eugene have?

In this situation, Hubert's 5 marbles are not a subset of Eugene's 13
marbles, so we can't simply seek the remaining subset. But the required
procedure is obvious (though not to a child, perhaps): We match
Hubert's 5 marbles with 5 of Eugene's marbles. We then seek the re-
maining subset of Eugene's marbles.

Eugene's Set Hubert's Set

The number of the remaining set is 13 5. This tells "now many more"
marbles Eugene has.

Using sets, we may formally state a definition of a b, the difference
of a and b, as follows:

If A is a set that contains a elements and B is a subset of A
that contains b elements, then a b is the number of the sub-
set of elements of A that are not in B.

The difference a b does not depend on the selection of sets A and B,
as long as thesc sets fulfill the specified requirements. One restriction on
the numbers involved in subtraction arises from this definition. This def-
inition says that in order to subtract I from a, b must be the number of a
subset of a set of a elements. Clearly, b cannot be greater than a. So ex-
pressions like 3 5, 17 IS, etc., make no sense at this stage.
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Exercise Set 1

1. For each of these exercises, answer these questions:

Is B a subset of A?
If so, what is the subset of A composed of elements not in B?

a. A = la, e,f,i,j, o, p, ul.
B = la, e, i, o, tii.

b. A = (red, white, blue, green).
B = (green).

c. A = (California, Oregon, Washington, Maine, Florida).
B = (Maine, Florida).

d. A = Ix, y, zl.
B = pc, y, zl.

e. A = fA,o,Oi.
B = 1)-

2. For each of the exercises above, write a subtraction sentence. The subtrac-
tion sentence for la is 8 5 = 3 because, given a set of 8 elements and a subset
of 5 elements, the remaining subset has 3 elements.

3. If B 3s a subset of A, as above, and if C is the subset of A composed of
elements not in B, then what set is B U C?

So far in our development of subtraction, we have not mentioned addi-
tion. Yet subtraction is often called the "inverse" of addition. Why?

In the examples in the exercises and the text above, we began with a set
and a subset of that set; then we asked for the remaining sub-
set. In Exercise la, the given set was

A = {a, e,f, i,j, o, p, 4
and the subset was

B = {a, e,i, o, a).

The remaining set that we found was

C = {,f,/, p}.
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Now, since C is the set of elements of A that are not in B, the sets C
and B are disjoint. We may form their union, B U C; clearly B U C = A.
That is,

{f, j, pl U la, e, i, o, ul = la, e, f, i, j, o, p, 4
Whenever we form a union of two disjoint sets, we have an addition

situation. The union shown vbove implies the addition sentence

3 + 5 = 8.

The subtraction sentence in Exercise la is

8 5 = 3.

So addition is certainly related to subtraction.
But let us make that relationship more explicit by returning to the

sets in Exercise la.

A = la, e, f, i, j, o, p, u).
B = fa, e, i, o, ul.

Instead of asking, "What is the subset of A whose elements are not in
B?" we could ask, "What is the set, disjoint from B, that will correctly
complete this sentence: B U 0 = A?" The answer to each question is the
same: if, j, p).

Now let us ask numerical questions about this example. We might
ask, "What is the number of elements of the subset of A whose elements
are not in B?" Or, we might ask the same question this way: "What
number added to 5 will give a sum of 8?"

In other words, to find the difference of 8 and 5, we may complete the
sentence 5 + = 8. Thus the sentence 5 + = 8 has the same meaning
as the sentence = 8 5.

Numbers that are added are called addends. Completing a sentence
such as 5 + = 8 may be called "finding the missing (or unknown)
addend." Thus, subtraction is sometimes called "the operation of find-
ing the missing addend." In addition, we seek a sum of two given
addends, while in subtraction we seek one of the addends of a given sum.
This is why subtraction is sometimes called the inverse of addition.

If subtraction means finding the missing addend, what does 8 5
mean? 8 5 is the number which when added to 5 gives 8, namely 3.
So 8 5 = 3. The difference, 3, may be found by completing 5 + = 8.
In this sentence, 5 is often called the known or given addend and 8 is
called the sum. Note that the expression "8 5," reading from left to
right, first shows the sum 8, then minus, then the given addend 5.

Of course, if the known addend is greater than the desired sum, it will
not be possible to find a suitable missing addend among the whole num-
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bers. For example, the sentences 6 + 0 = 2 and 0 + 9 = 8 cannot be
completed with whole numbers. Thus, expressions suat as 2 6 and
8 9 have no meaning when working within the set of whole numbers.

In this way we are led to the same restriction that we saw in our def-
inition of subtraction using sets:

The known addend cannot be greater than the sum.

(By the time your students reach junior high school, however, they will
find that there are numbersnamely, the negative numbersthat will
suffice to complete sentences like 6 + 0 = 2.) The missing-addend ap-
proach to subtraction applies, therefore, to larger classes of numbers
than does the approach using setsfor example, to a class that includes
not only whole numbers but also negative numbers and fractional
numbers.

We now use the missing-addend idea to describe subtraction as
follows:

Subtraction assigns to the pair of whole numbers a and b
the missing addend in the sentence

b + = a.

This missing addend is named "a h." It is also called the difference
of a and b. The expression "a b" names a whole number only when
b is not greater than a.

It follows that when we complete a sentence such as 0 + 6 = 19, we
have in effect "subtracted" 6 from 19, and we know that a name for the
missing addend is "19 6." Since, from our knowledge of addition,

+ 6 = 19, weget 13 = 19 6.
If children are introduced to subtraction through finding missing

addends, it is not absolutely necessary for them to memorize "subtrac-
tion facts." For example, if a child is asked to complete the sentence

11 -4 =0
(that is, asked to subtract 4 from 11), he should feel free to think

11 = + 4

Or

11 =4 +0
and then to complete either sentence from his knowledge of addition
facts. The missing addend that he finds, is the difference of 11 and 4,
11 4. The child should learn that "eleven minus four equals seven"
because "seven plus four equals eleven."

Can you now explain why addition can check subtraction?
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Exercise Set 2

1. Write two subtraction sentences for each of these addition sentences.

a. 6 + 4 = 10. 6 = 10 - 4. 4 = 10 - 6.

b. 8 + I = 9.

c. 12 +0 = 12.

d. 4 + 14 = 18.

e. 154 + 67 = 221.

2. Write an addition sentence for each of these subtraction sentences.

a. 12 - 7 . 5.

b. 6 - 6 = 0.

c. 8 - 0 = 8.

d. 10 5 = 5.

S. 74 67 = 7.

12 = 5 + 7 (or 12 = 7 + 5).

3. Convert each of these sentences to a subtraction sentence. Then complete
the s :ntences.

a. 3 + 0 = 12. E . 12 - 3.

b. E; -1- 6 = 7.

c. 12 + 0 = 12.

d. 14 + 71 = 15.

e. E + 28 = 95.

4. Convert each of these sentences to an addition sentence. Then complete
both sentences.

a. 0 = 16 - 9.

b. 1-1= 4 - 1.

c. 6 - 2 = n.

d. 7 = 9 - 9.

e. = 75 - 72.

9 + E = 16 (or Id + 9 = 16).
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PROPERTIES OF SUBTRACTION

In the new mathematics programs, children learn not only the mean-
ing of addition and multiplication but also the properties of these
mathematical operations. Two important properties of addition and
multiplication are the associative property and the commutative
property.

ASSOCIATIVE AND COMMUTATIVE PROPERTIES

OF MULTIPLICATION AND ADDITION

OPERATION ASSOCIATIVE PROPERTY COMMUTATIVE PROPERTY

Multiplication

For all whole numbers
a, b, and c,

(axb)xc =ax(bxc).

Example:
(3 x6)x4= 3 x(6 x4).

For all whole numbers
a and b,

axb=bxa.
Example:

12 x 7 = 7 x12.

Addition

For all whole numbers
a, b, and c,
(a + 6) + c = a + (b + c).

Example:
(3 + 6) + 4 = 3 + (6 + 4).

For all whole numbers
a and 6,

a + b = b + a.

Example:
12 + 7 = 7 + 12.

Does subtraction have these properties also? Let us consider
two examples:

1. Is subtraction commutative? Does 8 3 = 3 8? Clearly, 8 3 = 5
because 5 correctly completes the sentence 3 + 0 = 8. But "3 8"
is not a name for 5; in fact it is not a name for any whole number,
since no whole number fits the sentence 8 + 0 = 3. So 8 3 # 3 8.
The symbol " #" means "does not equal." (Using negative numbers, we
would find that 3 8 is 5, not 5, so that here, too, 8 3 # 3 8.)
Other such examples are easy to think of, but no more are necessary for
our purpose. Subtraction would be commutative only if a b = b a
for all whole numbers a and b. The above example shows that there is
at least one exceptionthat is, that a b does not equal b a for all
whole numbers. By showing that 8 3 is not equal to 3 8, we have
found an exception. So, subtraction is not commutative.

2. Is subtraction associative? For example, does 9 (5 3) equal
(9 5) 3?

but
9 (5 3) = 9 2 = 7,

(9 5) 3 = 4 3 = 1.
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So 9 (5 3) # (9 5) 3. This exception shows that subtraction is
not associative. (For subtraction to be associative, it would be necessary
that a (b c) . (a b) c for all whole numbers a, b, c.)

Exercise Set 3

1. Insert 11." or "*," whichever applies, in each circle.

a. 3 2 0 2 3.

b. (6 4) 0 0 6 (4 0).

c. 8 ÷ 8 0 8
÷ 8.

d. 86 x74 0 74 x86.

e. 6 (4 1) 0 (6 4) I.

2. Insert parentheses to make each sentence true.

a. 8 4 I = 5.

b. 24 ÷ 6 ÷ 2 = 2.

c. 12 7 0 = 5.

d. 9x4x 2 = 72.

a. 2x4+ 7 = 22.

THE ROLE OF ZERO IN SUBTRACTION

You are already aware that the number 0 plays a special role
in addition.

ADDITION PROPERTY OF 0

For every whole number a,
a + 0 = a and 0 + a = a.

Examples:
5 + 0 = 5.
0 + 16 = 16.

This special rule leads to some interesting facts about 0 in subtraction.
These facts, although presented here in a somewhat abstract way, are
best communicated to children through examples and exercises.

The addition property of zero leads to such sentences as 5 + 0 = 5,
0 + 16 = 16, 0 + 65 = 65, 2 + 0 = 2, etc. From each such addition
sentence two subtraction sentences can be formed.
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5 + 0 =5 leads to
0 + 16 = 16 leads to
0 + 65 = 65 leads to
2 + 0 =2 leads to

These results suggest the possibility of generalizing:
I. The fact that 5 5 = 0, 16 16 = 0, etc., suggests that "any

whole number subtracted from itself yields 0."
2. The fact that 5 0 = 5, 16 0 = 16, etc., suggests that "0 sub-

tracted from any whole number yields that whole number."
These generalizations constitute the role of 0 in subtraction; they can

be proved from the addition property of 0.

5 5 =0 and 5 0 = 5.

16 16 = 0 and 16 0 = 16.

65 65 = 0 and 65 0 = 65.
2 2 =0 and 2 0 = 2.

For any whole number a,

a + 0 = a.

For any whole number a,

a a = 0.

[

For any whole number a,

a 0 = a.

To summarize: What does 5 3 mean? 5 3 is the number that cor-
rectly completes the sentence

3 + 0 = 5.
If from a sum of two addends one of the addends is sub-
tracted, the difference is the remaining addend.

Subtraction is neither commutative nor associative.

Any number subtracted from itself yields 0.

0 subtracted from any number yields that number.

"SHIFTING OF TERMS" IN SUBTRACTION

Even after the meaning of subtraction is thoroughly understood,
there still remains the practical problem of performing subtraction com-
putations efficiently. In simple problems such as 11 4 = 0 the miss-
ing-addend approach, namely

11 = 4 + 0,

can be used effectively by a child who knows his elementary addition
facts. 76
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However, in problems of even moderate complexity, a direct use of
the missing-addend approach is often not practical. For example, it may
not help a beginner very much if he tries to calcu;ate 46 19 = 0 by
writing 46 = 19 + . He learns how to break this problem up into
simpler parts which he can handle with the knowledge already at his
disposal. To accomplish this, he can use a subtraction algorithm*
whereby he computes the difference:

46
19

46 = 40 + 6 = 30. 16.
19 = 10 +9 = 10+ 9.

He can then use the missing-addend approach to obtain 30 10 = 20,
16 9 = 7; so his answer becomes 20 + 7 = 27.

Notice, however, that this computation makes a tacit assumption
which is rarely pointed out in elementary texts. The original prob-
lem was

46 19.

For convenience, it was first expressed in the form

(30 + 16) (10 + 9).

However, the answer was actually computed as

(30 10) + (16 9).

It is only fair to ask how we know that this "shifting of terms" yields
the correct result. The answer is embodied in the following generaliza-
tion:

For all whole numbers a, b, c, d, where a is not smaller than
c, and b is not smaller than d,

(a + b) (c + d) = (a c) + (b d).

(We include the following proof for those teachers who are interested in
seeing one.)

According to our missing-addend approach to subtraction (see page
72):

If a c = x, then a = c + x; and
if b d = y, then b = d + y.

*A more detailed discussion of subtraction algorithms will appear in a later chapter.
At this point we introduce a subtraction algorithm briefly, in order to develop an
important property of subtraction.
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From these equatiois, and from the associativity and commutativity of
addition, we get

(a + b) = (c + x) + (d + y)
= (c + d) + (x + y),

which simply means that

(a + b) (c + d) = x + y.

Substituting for x and y, we get

(a + b) (c + d) = (a c') + (b d ).

This is the equality we were trying to establish.
A special case is obtained by letting d = b:

(a + b) (c + b) = (a c) + (b b)
= (a c) + 0
= (a c).

The result is expressed as

(a + b) (c + b) = (a c).

It simply means that the result of a subtraction is unchanged if the same
number is added to both numbers in the subtraction problem.
For example:

421 97 = (421 4- 3) (97 + 3)
= 424 100

= 324.
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1. How can division be explained

a) Through the use of sets?
b) Using the ideas of multiplication?

2. What is meant by an expression such as "12 -:. 3"?

Have you ever given your pupils division exercises and told them to
check by multiplying'? Perhaps one of the exercises was

18 )111-

If a pupil obtained the answer 23, he was supposed to check by mul-
tiplying 23 by 18. He hoped to obtain 414 if his answer to the division
exercise was correct.

23

x 18

184

230
414

Evidently division has some relationship to multiplication. What is
this relationship? What are the consequences of this relationship, and
how should they be presented to children?

The relationship of division to multiplication rests on the very mean-
ing of division. We teach children that "eight divided by two equals
four," but we also need to teach them why. If a child says, "Eight
divided by two equals six," we must be able to show him why his state-
ment is incorrect. In order to do this, we must go into the very meaning
of division.

DIVISION

Children usually have little difficulty with problems like this one:
If 20 boys go to play basketball (5 boys per team), how many teams
can be formed?
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As indicated in the figure below, no knowledge of arithmetical opera-
tions is needed to separate the 20 boys into teams of 5 each.

This separation can also be achieved without the actual presence of
the boys. Let a star (*) stand for each boy. We wish to form teams of
5 boys, so let us arrange the stars in rows of five.

V V V V V
V V *V' V

4 rows
.v.. .v.. .v.. .v.. .v..

.-'----.4 .v.. .v.. .v.. .v..

The number of rows we can form is the number of teams.
In the language of sets, this problem can be expressed as follows:

Into how many disjoint sets of 5 elements each can a set of 20
elements be partitioned?

Or, using the language of arrays, * this problem can be expressed as
follows:

If an array has 20 elements, and if each row has 5 elements,
how many rows are there?

But in an array the number of ele-
mer:s in a row is the same as the num-
ber of columns. So we can again re-
state the above problem:

5 columns
_z__i_ v

.V.. .V.. .V.. .V.. 4

.V.. .V.. .V.. .V.. .V.. 5 elements

.V.. .V.. .V.. .V.. .V.. in a row

.V.. .V.. .V.. .V.. .V..

If an array has 20 elements, and if the array has 5 columns,
how many rows are there?

*The only arrays we shall be concerned with are rectangular arrays.
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All of the above approaches to the above problem are equivalent. The
numerical result is always 4. We may think of any of the above
approaches as a way in which the number 4 is obtained from the num-
bers 20 and 5. To the number pair 20 and 5 division assigns the number
4. We say that 20 divided by i is 4. In symbols we write:

20 ÷ 5 . 4.
Using arrays, we can define the quotient of a pair of whole numbers

as follows:

If an array with b elements (where b 4 0) has a columns,
then the number of rows is named "h ÷ a." We call this the
quotient of h and a. Division assigns the quotient "b 4. a"
to the pair of whole numbers b and a.

Problems somewhat different from the 'one above also fall into the
pattern of arrays and are thus an application of division. For example:

If 20 pennies are being distributed to 4 boys, how many pennies
will each boy receive?

If we distribute one penny L -. time to each boy, the result is the same
as arranging the pennies in an array with one column of pennies
assigned to each boy. How many pennies will be in each row?

...., I®O 0 o 0 ® ® .1.0 0 0 04

In such a problem we are given the number of columns and we seek the
number of elements in a column. But the number of elements in
a column is the same as the number of rows in the array. In other words,
we know

(1) the number of elements in an array,
(2) the number of columns,

and we seek
(3) he ; umber of rows.

If we are given the number of elements in an array, then we may be
given the number of columns and seek the number of rows or,
equivalently, we may be given the number of rows and seek the number
of columns. Either case may be considered to be a division problem.
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Exercise Set 1
1. Draw arrays to fit these conditions:

a. 12 elements c. 10 elements
2 rov-s 5 rows

b. 16 elements
4 rows

d. 6 elements
1 row

2. How many columns does each array have in Exercise 1?

3. Write two division sentence kr each of these arrays:

a. XXX
XXX
XXX
XXX
XXX

15

15

÷
÷

5

3

=
=

3.
5.

C. o
o

o

o

o

o

o

o

0

0

0

0

o

0

0

0

ov 'Irv,

b. 9
9

?
9

9

9

9
9

9

9

9
9

9

9

9
9

9

9

?
9

9

9

?
9

d. 4 + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +

In our development of division so far we have not mentioned mul-
tiplication. Yet division is often called the "inverse" of multiplication.
Why?

Do you recall how arrays are used in explaining multiplication? The
product of 3 and 5, for example, is the number of elements in an array
with 3 rows and 5 columns.

5 columns

666963:
3 rows 1 til e 6 4110 0

0 GI 0 13 C.4

Therefore, the array has 3 x 5 elements.
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In our division examples so far, we were given the number
of elements in an array and the number of rows (or columns). So, in
effect, we were given a product and one of two factors of that product.

Thus in a division problem, instead of asking, "What is the number
of rows of an array with 5 columns and 20 elements?" we could ask,
"5 multiplied by what number will give 20?"

In other words, to divide 20 by 5, we may complete the sentence
5 x = 20, or 0 x 5 = 20. The sentence 5 x Li ... 20 has the lame meaning
as the sentence 20 ÷ 5 = D.

Numbers that are multiplied to form a product are called factors (of
that product). Thus, the problem of completing the sentence 5 x = 20
may be considered as "finding the missing factor." So division is con-
cerned with finding the missing factor. Whereas in multiplication we
seek a product of two given factors, in division we seek one of
the factors of a given product. This is why division is often called the
inverse of multiplication.

Approaching division through multiplication becomes increasingly
important in later grades, when pupils have to work with fractional
numbers and negative numbers. As pupils advance, they should
be brought to understand that 20 ÷ 5 is that number which, when mul-
tiplied by 5, gives 20. Of course, the interpretation of division in terms
of sets and arrays is still useful.

We may formally state the missing-factor approach to division as
follows:

Division assigns to the pair of whole numbers a and b the
missing factor in the sentence b x = a, provided there is
exactly one whole number that fits the sentence.

The missing factor is named "a ÷ b." It is also called the quotient of a
and b.

A pupil who is introduced to division by finding missing factors need
not memorize "division facts." For example, to complete the sentence

32 ÷ 4 = 0,
a child may think

32 -E3x 4
Or

32 = 4 x 0

and complete the sentence from his knowledge of multiplication facts.
This will involve trial and error at first.

A problem closely related to divis:on comes up in connection with
situations similar to that of the 20 boys playing in teams of 5. What if
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23 boys want to play basketball? Can we divide 23 by 5? If we could, we
should find the result by completing

5 x 0 = 23.

But no whole number exists to complete this sentence correctly, so there
is no whole-number meaning for 23 -,.- 5. When working with just the
whole numbers, we would say that 23 is not divisible by 5.

In later grades children will learn that fractional numbers can be used
to complete correctly sentences such as 5 x 0 = 23. But the concrete
problem remains: How can we decide, mathematically, how many
teams of 5 can be formed from 23 boys? The answer may be obtained by
attempting to complete an array:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 4 teams

0 0 0 0 0

0 0 0 *-------...,....

3 left over

This shows that 4 teams can be formed, but there will be 3 players "left
over."

Another approach is the following:
For the whole numbers 23 and 5, we determine whole num-
bers to complete the sentence 23 = (5 x 0) + L in such
a way that the number for the A is as small as possible
(in this case less than 5). These numbers are 4 and 3,
since 23 = (5 x 4) + 3.

Once again we see that 4 teams of 5 can be formed, with 3 boys remain-
ing.

/n general, if we are given a set of b elements, and if we want to form
disjoint subsets of a elements each, we then seek to complete the
sentence

b = (a x 0) + L,
where the number for the A (called the remainder) is less than a.

Division problems with a remainder are treated further in Chapter 9,
"Division Algorithms."

Exercise Set 2

1. Write two division sentences related to each of these multiplication
sentences.
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a. 6x7 .., 42.

b. 3x1 = 3.

c. 9x10 =90.

d. 10x 13 = 130.

. 4 x 8 = 32.

Division

6 = 42 4 7. 7 = 42 4 6.

2. Which of these sentences can be completed by a whole-number missing
factor?

a. 6 xn= 30. f. 3x::; = 0.

b. 6x0= 35. g. 6 x 0 =64.

c.0x 9 = 99. h. Ox 12 = 13.

d. Ox0= 10. i. 0 x 15 . 0.

o. 2 x 0= 2. j. 4x0= 152.

3. For each division sentence write a related multiplication sentence, then
complete both sentences.

a. 8 4 2 = 4 8 =Ex 2 (or 8 = 2 x [ 4 ] )

b. 6 ÷ 6 =0.

c. 12 ÷ 1 =0.

d. 0÷ 8 =0.

S. 55 4 11 = 0.

4. Which whole numbers will complete this sentence?

0 x 0 = 0.

5. Complete these sentences with whole numbers. In each case use the
smallest possible whole number for the A. In each sentence the number used
for the A should be less than the given factor.

a. 62 = (7 x IrE) + k
b. 6 = (4 x0) + L.

c. 5 = (7 x 0) + ,A.
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d. 55 = (11 xii) + L.

S. 57 = (7 x ,) 4- L.

PROPERTIES OF DIVISION

In the new mathematics programs, childc?.n learn not only the mean-
ing of addition and multiplication but also the properties of these
mathematical operations. Two important properties of addition and of
multiplication are the associative property and the commutative
property.

ASSOCIATIVE AND COMMUTATIVE PROPERTIES

OF MULTIPLICATION AND ADDITION

OPERATION ASSOCIATIVE PROPERTY COMMUTATIVE PROPERTY

Multiplication

For all whole numbers
a, b, and c,

(axb)xc =ax(bxc).

Example:
(3x6)x4.3x(6x4).

For all whole numbers
aandb,

axb = bxa.

Example:
I2x7.7x12.

Addition

For all whole numbers
a, b, and c,
(a + b) + c = a + (b + c).

Example:
(3 + 6) + 4 = 3 + (6 + 4).

For all whole numbers
aandb,

a + b = b + a.

Example:
12 +7 = 7+ 12.

Does division have these properties also? Let us consider two
examples:

1. Is division commutative? For example, does 12 + 4 = 4 + 12?
Clearly 12 + 4 = 3 because 3 completes the sentence "12 = 0 x 4." But
"4 + 12" is not a name for 3; in fact it is not a name for any whole
number, because no whole number fits the sentence 12 x 0 = 4.
So 12 + 4 4 + 12. (Using rational numbers, we would find that
12 + 4 = 3 and 4 + 12_ I. and yet, here too, 4 12 12 + 4.)

3
This exception (although there are many others) is sufficient to show

that division is not commutative. (For division to be commutative, it
would be necessary that a+b=h+ a for all whole numbers a and b.)

2. Is division associative?
For example, does 16 + (8 + 2) = (16 + 8) + 2?

16 + (8 + 2) = 16 + 4 = 4,
(16 + 8) + 2 = 2 + 2 = 1.

but
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So, 16 4- (8 ÷ 2) # (16 ÷ 8) 4. 2, showing that division is not associa-
tive. (For division to be associative it would be necessary that

(a ÷ b) ÷ c = a ÷ (b ÷ c)
for all whole numbers a, b, and c.)

Notice, however, that there are special cases which could con-
fuse children. For example, does (16 4. 8) ÷ 1 equal 16 4- (8 ÷ 1)? Yes.
A child might say, "Division is sometimes associative." However, we
may apply the terms associativity or commutativity on:y when
these properties hold in all cases. A single exception is sufficient to show
that an operation is not commutative (or associative), but specific ex-
amples can never show that an operation is commutative (or associative).

We have come to the same conclusions about division as we
did about subtraction: neither is commutative, neither is associative.

Exercise Set 3

1. insert "." or "*," whichever applies, in each circle.

a. 6 + 2 0 2 + 6.

b. (6 + 2) + 1 0 6 + (2 + 1).

c. (16 + 4) + 2 0 16 + (4 + 2).

d. (12 + 6) x 2 0 12 + (6 x 2).

. 12 x(6 + 2) 0 (12 x 6) + 2.

2. Insert parentheses to make each sentence true.

a. 8 + 4x 2 . 1.

b. 8 .i. 4 ÷ 2 = 4.

c. 12 + 3+1 = 3.

d. 12 + 3 1 = 3.

e. 12 + 3x2 = 2.

ZERO AND ONE IN DIVISION

We have already noted that the numbers 0 and 1 play special roles in
multiplication.
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MULTIPLICATION PROPERTY
OF 1-

MULTIPLICATION PROPERTY
OF 0

For every whole number a,

axl =a and Ix(' -a.
For every whole number a,

ax0 -0 and Oxa . O.
Examples: Examples:

5 x 1 5. 5 x 0 -, 0.
1 x 16 = 16. 0 x 16 , O.

These special properties lead to some interesting facts about 0 and 1
in division. They are probably best communicated to children through
examples and exercises.

ONE IN DIVISION

The multiplication property of 1 leads to such sentences as 5 x 1 = 5,
1 x 16 = 16, 1 x 2 = 2, 65 x 1 = 65, etc. From each of these multiplica-
tion sentences, two division sentences may be derived.

5 x 1 =5 leads to
1 x 16 = 16 leads to
1 x 2 =2 leads to

65 x 1 = 65 leads to

These results suggest two generalizations.
1. The fact that 5 ÷ 5 = 1, 16 ÷ 16 = 1, etc., suggests that any whole

number divided by itself yields I .

Actually, we shall see in the next section that there is one exception.
We do not have 0 ÷ 0 = 1. In fact we shall see that the expression
"0 ÷ 0," and indeed any expression "a ÷ 0," is meaningless.

2. The fact that 5 ÷ 1 = 5, 16 ÷ 1 = 16, etc., suggests that any whole
number divided by 1 yields the given whole number.

These generalizations govern the role of 1 in division. They can be
derived from the multiplication property of 1.

5 ÷ 5 = 1 and 5= 1 = 5.
16 ÷ 16 = 1 and 16 1 = 16.
2 ÷ 2 = 1 and 2= 1 = 2.

65 ÷ 65 = 1 and 65 ÷ 1 = 65.

For any whole slumber a,
a x 1 = a.

For any whole number a,
except 0,

a÷a= I.

For any whole number a,
a- I = a.

ZERO IN DIVISION

The number 0 can appear in division exercises in three ways:

(1) 0 divided by some other number
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(2) Some other number divided by 0
(3) 0 divided by 0

We shall investigate these three possibilities, relying always on the mul-
tiplication properties of 0:

For every whole number a,
ax0.0 and Oxa =O.

If neither a nor b is 0,

then a x b cannot be 0.

(1) 0 divided by some other number

The problem here is to decide what numbers, if any, are named by
expressions such as "0 ÷ 4," "0 ÷ 12," "0 -:- 1," "0 ÷ 75."

Earlier in this chapter we found what number is named by an expres-
sion such as 20 ÷ 5. To do that, we relied on the missing-factor ap-
proach to division. Thus, 20 ÷ 5 is that number (there is only one such
number) which, when multiplied by 5, gives 20.

5 x 0 = 20.

Since 5 x 4 = 20, then 20 ÷ 5 = 4.
(Note that 5, multiplied by any number other than 4, cannot yield 20
as the product.)

In the same way, 0 --, 4 is that number (there is only one such num-
ber) which, when multiplied by 4, gives 0.

4 x 0 = 0.
Since 4 x 0 = 0, we have found that 0 -:- 4 = 0.

(Note that 4, multiplied by any number other than 0, cannot yield 0 as
the product.)
Similarly, by completing

12 x 0 = 0, 1 x 0 = 0, 25 x 0 = 0,
we find that

0 - : - 12 = 0, 0 -s- 1 = 0, 0 + 25 = 0.

(Notice that, we have avoided 0 --, 0; this special case is handled later.)
These examples suggest that "0 divided by any whole number (except

0) yields 0." More formally stated:
For any whole number a, if a = 0 then 0 + a = 0.

This generalization arises from the fact that there is one and only one
missing factor in any sentence of the form a x 0 = 0 (where a * 0).
This missing factor is the number 0 itself.

(2) Some number, other than 0, divided by 0
The problem here is to decide what numbers, if any, are named by ex-

pressions such as "4 -:- 0," "8 -:- 0," "1 ÷ 0," "24 ,.- 0."
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Again, we use the missing-factor definition of division to investigate
the problem. If 8 ÷ 0 is a number, it must be a number which, when
multiplied by 0. yields 8.

0 x = 8.

But no whole number can make this true, since 0 times any whole
number is 0. So "8 .4- 0" does not name a whole number; the expression
"8 ÷ 0" is meaningless.

Analyzing 4 ÷ 0, 1 ÷ 0, anti 24 4. 0 leads to the sentences

OxEl= 4, Ox= 1, Ox0= 24.
No numbers can make these sentences true, because the product of 0
and any number must be 0. Thus, the expressions "8 ÷ 0," "4 ÷ 0,"
"1 +. 0," "24 0," etc., are meaningless. These examples suggest that
division by zero is meaningless. Before we can assert this generalization,
we must investigate the possibility of dividing 0 by 0.

(3) 0 divided by 0

The problem here is to decide what number, if any, is named by the
expression "0 ÷ 0."

Using the missing-factor definition of division, 0 ÷ 0 would be a
number which, when multiplied by 0, yields 0.

0 x 0 = 0.
Are there any such numbers? Unfortunately every whole number will
fit this sentence.

0 x = 0, 0 x 111 0, 0 xgi. 0, etc.

These equalities suggest that 0 4. 0 is 1 , 2, 3, ... . However, "0 ÷ 0"
can't be the name of every whole number because, for example, if we
had 0 ÷ 0 = 4 and 0 ÷ 0 = 6, we would obtain the inconsistency 4 = 6.
So "0 ÷ 0" is not the name of a unique number, and therefore "0 ÷ 0"
is given no meaning at all.

We may now assert a general fact of arithmetic:
Division by 0 is meaningless.

We might remark here that division by 0 will remain meaningless
even when other numbers, such as the negative and rational numbers,
are considered.

Exercise Set 4

1. If an array has 9 rows and 9 elements altogether, how many columns does
it have? What division sentence expresses this result?
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2. Which of these expressions name(s) the number 0?

Division

a. 0 4- 7 c. 9 0 0 4- 0
b. 14 14 d. 1x0 f. 0 ÷

3. Which of these expressions name(s) a whole number?

a. 6 ÷ 4 c. 0 4. a 0 ÷ 0

b. 8 16 d. 6 4. 0 f. 13 -3

SUMMARY

Subtraction and division are similar because they are similarly related
to addition and multiplication, respectively. Consequently, they have
similar properties. Because 0 plays a special role in multiplication,
0 plays a special role in division.

To summarize: What does "8 2" mean? 8 ÷ 2 is the unique number
that fits the sentence

2 x 8.

If the product of two factors is divided by one of these factors,
the quotient is the remaining factor.

Division is neither commutative nor associative.

Any number (except 0) divided by itself yields the quotient 1.

Any number divided by 1 yields that number.

0 divided by any number (except 0) yields 0.

Division by 0 has no meaning.
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ADDITION AND SUBTRA

ALGORITHMS

ON

iAi

fir

1. What is meant by compute?
2. What is meant by algorithm?
3. How do we justify the traditional addition algorithm?
4. How do we justify the traditional subtraction algorithm?

OPERATIONS AND COMPUTATION

We :lave seen that addition assigns to any pair of numbers, a and b,
a number, a + b, called their sum. A definition was given in terms of
sets:

For any two whole numbers, a and b, let A and B be disjoint
sets such that n(A) = a and n(B) = b. Then

a + b = n(A U B).

By using this definition, it is possible to derive the fundamental prop-
erties of addition:

1. a + b = b + a (commutative property)
2. (a + b) c = a + (b + c) (associative property)
3. a + 0 = a (addition property of 0)

Subtraction can also be defined in terms of sets:

Suppose the whole number a is greater than, or
the same as, the whole number b. Now let A be
a set such that n(A) = a, and let B be a subset
of A such that n(B) = b. Then a b is
the number of elements in A which are not in B.

We have seen that this definition is equivalent to defining subtraction in
terms of addition. If a and b are whole numbers, with a greater than or
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the same as b, then there is a whole number c such that a = b + c.
Furthermore, if A and B are the sets described above, c is the number
of elements in set A which are not in set B. Thus, we can define a b
to be the number c such that a = b + e.

This chapter will present computational techniques related to addi-
tion and subtraction. However, before going into the techniques, let's
be certain that we understand the nature of computation. The sum of
3 and 5 may be denoted by

3 + 5.

But we memorize a standard name or symbol for this number, namely

8,

and we write

3 + 5 = 8.

The sum of 432 and 359 may be denoted by

432 + 359.

We know that there is a standard name for this sum, too. However,
we hardly care to memorize it. Instead, by making use of (1) the de-
sign of the numeration system, (2) the combinations that we have
memorized, and (3) the properties of the addition operation, we can
derive schemes called algorithms (or algorisms) for readily determining
such standard names. The determination of standard names is the es-
sence of computation. We begin with a certain name for a number and
proceed to the standard name. Because of this, some people refer
to computation as a name-changing process.

ADDITION COMPUTATION

Our numeration system has two main featuresit is a place-value, or
positional, system; and its base is ten. The first of these features is the
more important as far as computation is concerned. We might say that
it is this aspect of the numeration system that allows us to "do what we
do" in computation.

Let us recall that the numeral 457, for example, in the base-
ten numeration system means

(4 x 102) + (5 x 10) + (7 x 1).

Actually "457" can be thought of as an abbreviation for this "expanded
form." Of course, children who have not studied multiplication and ex-
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ponents are not yet ready for the above form, but they can write 457
as

4 hundreds + 5 tens + 7 ones

or as

400 + 50 + 7.

Also, given either of the latter forms, they should recognize it as a name
for the number 457.

As a first illustration of what is involved in computation, consider
the sum

15 + 8.

Because of the way our numeration system is set up, we know that
15 = 10 + 5. Hence, we can write

15 + 8 = (10 + 5) + 8.

By applying the associative property, we have

(10 + 5) + 8 = 10 + (5 + 8).

Now, children usually learn that 5 + 8 is the same number as 13 and
that 13 is the same number as 10 + 3. So we have

10 + (5 + 8) = 10 + (10 + 3);

and another application of the associative property gives

10 + (10 + 3) = (10 + 10) + 3.

Finally, since 10 + 10 = 20, we arrive at

(10 + 10)

Summarizing:

+ 3 = 20 + 3 = 23.

15 +8 = (10 1- 5) + 8
= 10 + (5 + 8)
= 10 + 13
= 10 + (10 + 3)
= (10 + 10) + 3
= 20 + 3
= 23.

In computing a sum such as

43 + 25,

we first use our knowledge of the decimal numeration system to re-
name 43 and 25 thus:

43 + 25 = (40 + 3) + (20 + 5).
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We know that the associative and commutative properties allow us to
rearrange the addends:

(40 + 3) + (20 + 5) = (40 + 20) + (3 + 5).

Since 40 + 20 = 60 and 3 + 5 = 8, the sum is 60 + 8, or 68. We can
display our work as follows:

43 + 25 = (40 + 3) + (20 + 5)
= (40 + 20) + (3 + 5)
= 60 F 8
= 68.

This is but one of the systematic procedures or algorithms for comput-
ing a sum.

The above explanation should raise one important question: From
what has been said, how do we know that 40 + 20 = 60? A complete
explanation of this can rest on the distributive property (which has not
yet been discussed) and on the facts that 40 means 4 x 10 and 20 means
2 x 10. But when this question first arises in the elementary school, mul-
tiplication need not be involved. At this stage the children interpret 40
as 4 tens (that is, the number for 4 "bundles," each bundle consisting of
ten objects.) Since 40 is 4 tens and 20 is 2 tens, 40 + 20 is 6 tens or 60.
Some time should be spent on sums of this sort before going into ex-
amples of the type being discussed above. Likewise, before considering
sums such ,as 327 + 253 it is necessary to discuss sums of multiples e;
100. We'll assume in what follows that the necessary work with mul-
tiples of 10 and 100 has been done.

Let us return to the sum 43 25. Once we realize that we can re-
arrange addends as we please because addition is both commutative and
associative, it is easy to devise other ways of displaying our work. The
form shown below is slightly more compact:

43 = 40 + 3.
25 = 20 + 5.

60 + 8 = 68.

Bear in mind, however, that although it is not apparent that com-
mutativity and associativity have been used when the work is

shown this way, justification of this form rests on these two properties.
It is, of course, possible to shorten the work further. We might still

think exactly as above, but simply write:

43 43

25 25

60 or 8

8 60

68 68
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Finally, we might show the work in the extremely compact
form familiar to all:

43
25

68

It is important that we do not move to the compact form too quickly in
teaching children. The process tends to become purely mechanical for
far too many elementary school children. If one of the longer forms is
used, a child is compelled to think about what is being written.
The short form should be introduced only when we feel that the child
thoroughly understands the important ideas that underlie the addition
computation. Even when he finally uses the short form, he should re-
main aware of the basic ideas on which the process rests.

As a further illustration of what is involved in computation, let us
consider the sum

28 + 57.

In analyzing this for a child, we might begin with two sets of physical
objects.

We have (2 tens + 8 ones) + (5 tens + 7 ones).

Regrouping gives us (2 tens + 5 tens) + (8 ones + 7 ones).

/
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We realize that the 15 ones can be grouped to produce another ten
and still leave five ones. The ten is put with the other 7 tens.

/I
..;

GB 0.

Since we now have 8 tens + 5 ones, we say that the computed sum is 85.
Displaying this reasoning in a fashion similar to the earlier example,

we have:

28 + 57 = (20 + 8) + (50 + 7)
= (20 + 50) + (8 + 7)
= 70 + 15
= 70 + (10 + 5)
= (70 + 10) + 5
= 80 + 5
= 85.

You should recognize that so-called "carrying" is nothing more than
regroupingthat is, an application of the associative property. This
takes place in moving from the fourth line to the fifth in the
above display.

Here again, the work can be displayed more briefly:

28 = 20 + 8
57 = 50 + 7

70 + 15
70 4-

10 + 5

80 + 5 = 85

After we are sure that the children understand the underlying concepts,
we can suggest that they use either of the following forms:

28 28
57 .-20 + 50 57
70 15

15*-8 + 7 70
85 85
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Eventually, we encourage a child to think, "8 + 7 is 15. I'll write down
the 5 and remember 10. Then 10 + 20 + 50 is 80." All that would ap-
pear on the paper is

28
57
85

Let's consider one more example of an addition computation. Here
are several different ways of displaying the work in computing 283 +
54 + 105. Remember that no matter how much or how little we actually
write, the reasoning is essentially the same.

1. 283 + 54 + 105 = (200 +80 + 3) + (50 + 4) + (100 + 5)
= (200+ 100) + (80 + 50) + (3 + 4 + 5)
= 300 + 130 + 12
= 300 + (100 + 30) + (10 + 2)
= (300+ 100) + (30 + 10) + 2
= 400 + 40 + 2
= 442.

2. 283 = 200 + 80 + 3
54 = 50 +4

105 = 100 + 5
300+ 130+ 12 = 300 + (100 + 30) + (10 + 2)

= (300+ 100) + (30 + 10) + 2
= 400 + 40 + 2

300 = 442.
100 + 30 <

10 + 2 <

3.

400 + 40 + 2 = 442.

283
54

105
12

130
300
442

4. 283
54

105
442

The concepts at the heart of computation are brought out best by the
first form shown. You will note that, as in the preceding examples, we
(1) made use of what we know about our numeration system, (2) relied
on previously memorized facts, and (3) used the properties of addition.
Once again, it is important that children understand these underlying
ideas before using a shorter form for computation.
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b. 173 + 8

c. 231 + 36

d. 97 + 24

e. 208 + 523

f. 145 + 278

+ 12

= 50 + (0 + 2)
. (50 + 0 ) + 2
= 60 +2
= 62.

2. Compute each of the following sums by using a form like that displayed
in the above exercise.

a. 19 + 67

Addition and Subtraction Algorithms

SUBTRACTION COMPUTATION

We shall now see that the same general ideas apply to subtraction.
Subtraction has beet defined in such a way that if we know addition

b. 173 + 8

c. 231 + 36

d. 97 + 24

e. 208 + 523

f. 145 + 278

99--

SUBTRACTION COMPUTATION

We shall now see that the same general ideas apply to subtraction.
Subtraction has beet defined in such a way that if we know addition
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"facts," then we know subtraction "facts." For example, the number
that completes

7 -2 =0
so as to form a true sentence is, by definition, the same as the number
that completes

7 = + 2.

Thus, since 7 = 5 + 2, we can write 7 2 = 5. Similarly, we can write
15 8 = 7 because 15 = 7 + 8.

Determining the standard na,ne for 39 15 is almost as easy. We
know that 39 means 3 tens + 9 ones, while 15 means 1 ten + 5 ones.
We also know that 39 15 is that number which, added to 15, gives the
sum 39. So we wish to complete the following:

(1 ten + 5 ones) + (Atens + O ones) = 3 tens + 9 ones.
By using the commutative and associative properties of addition, we
can rearrange the terms as follows:

(1 ten + A tens) + (5 ones + O ones) = 3 tens + 9 ones.

The easiest way to find correct numbers for the frames is to complete
the two sentences

1 ten + A tens = 3 tens, and 5 ones + 0 ones = 9 ones.

Using 2 for the A correctly completes the first sentence, while inserting
4 for the 0 correctly completes the second sentence. Hence 39 15 is
2 tens + 4 ones, or 24. The work can be arranged in a fashion similar
to that for addition:

Or

39 = 3 tens + 9 ones
15 = 1 ten + 5 ones

2 tens + 4 ones = 24

39 = 30 + 9
15 = 10 + 5

20 + 4 = 24

Now consider this number sentence:

This is equivalent to
63 28 = 0.

28 + = 63.
Or we could write

(2 tens + 8 ones) + (L tens + O ones) = 6 tens + 3 ones.

Now if we follow the same procedure as in the preceding example, we
arrive at the two sentences

2 tens + A tens = 6 tens, and 8 ones + 0 ones = 3 ones.
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Unfortunately, the latter sentence cannot be completed with a whole
number. However, once more the associative property comes to our aid.
Since

6 tens + 3 ones = (5 tens + 1 ten) + 3 ones
= 5 tens + (1 ten + 3 ones)
= 5 tens + 13 ones,

we have

(2 tens + 8 ones) + (L tens + 0 ones) = 5 tens + 13 ones.

We then have

(2 tens + L tens) + (8 ones + 0 ones) = 5 tens + 13 ones.

from which we derive the two sentences

2 tens + tens = 5 tens, and 8 ones + 0 ones = 13 ones.

We complete these sentences with 3 for the L and 5 for the Q, and con-
clude that 63 28 is 3 tens + 5 ones, or 35. As before, this can be dis-
played in different ways:

63 = 6 tens + 3 ones = 5 tens + 13 ones.
28 = 2 tens + 8 ones = 2 tens + 8 ones.

3 tens + 5 ones = 35.

63 = 60 + 3 = 50 + 13.
28 = 20 + 8 = 20 + 8.

30 + 5 = 35.

Even if a child continues to think of subtraction in terms of a set and
one of its subsets, he will arrive at essentially the same process. In the
example above, he would begin with a set (call it A) of 63 objects:

After regrouping, it is easy to identify a subset (call it B) of 28 objects:
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Then the set of objects in A but not in B consists of 3 tens + 5 ones, or
35 objects. Notice that if a child thinks of subtraction in this way, he
can still display his work in either of the forms above.

Below is one more illustration of a subtraction computation:
423 - 157

423 = 400 + 20 + 3 = 400 + 10 + 13 = 300 + 110 + 13.
-157 = 100 + 50 + 7 = 100 + 50 + 7 = 100 + 50+ 7.

200 + 60 + 6 = 266.

The child who displays the computation in this form is much less likely
to lose sight of the ideas involved. Of course, he should eventually get
to the point where he writes only:

3 II I

fr 2 3
-1 5 7

2 6 6
But this should come after considerable work on the basic con-
cepts, and even then he should be able to explain his work if called upon
to do so.

Exercise Set 2

Use expanded notation to compute the following differences.

1. 78 23

2. 63 7

3. 52 39

4. 348 92

5. 403 126

6. 500 278

The subtraction algorithms discussed above are perfectly general.
They are applicable to all subtraction problems concerned with whole
numbers. There are shortcuts, however, that one who is observant can
often use. Many children are capable of learning the underlying ideas
for such shortcuts and will be on the lookout for a chance to apply them.
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We shall discuss one useful idea here. To introduce this idea, let us con-
sider two persons whose ages are 17 and 12. The difference between
their ages is 5. What will be the difference in their ages 14 years from
now? 25 years from now? Of course the difference will still be 5, no mat-
ter how many years from now we want to consider. This, then, is saying
that

Or

or in general

17 12 . (17 + 14) (12 + 14)

17 12 . (17 + 25) (12 + 25)

17 12 = (17 + c) (12 + c),
where c is any number.

In fact, we could say that if a is a numtler greater than or the same as
a number b, then

a b = (a + c) (b + c)
for any number c. We can express this idea as follows:

When each of two numbers is increased by the same amount,
the difference between the resulting numbers is the same as
the difference between the original numbers.

How can this idea be used in subtraction computation? The
usual algorithm for computing the difference 427 299 is somewhat
complicated. However, by using the principle just discussed, it is easy.
We choose c to be 1, and we have

427 299 = (427 + 1) (299 + 1) = 428 300 = 128.

It should be clear why c was chosen to be 1.

Exercise Set 3

1. Show an easy way to compute
a. 629 297

b. 4,384 1,995

2. Some people have learned a different subtraction algorithm. To compute
53 26, they would add 10 to the 3 in 53 and also add 10 to the 2 tens in
26. So their work would look like this:

50 + 13 5 13

30 + 6 Or 2, 6

20 + 7 =27 2 7

Show that this is just another way to apply the principle expressed by

a b = (a + c) (b + c).
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COMPUTATION IN ANOTHER BASE

Earlier it was stated that the positional feature of our numera-
tion system is more important for computation than the fact that the
base is ten. To illustrate this, let us now examine addition computation
in a base-five system.

In the base-five numeration system, the numeral "21 five " is read "two
one, base five" and means 2 fives + 1 one. This, of course, is

the number eleven. Thus

21 five = 11

The different numerals that appear in the above equation name
the same number. They suggest different ways of grouping:

2 fives + 1 one .-- 1 ten + 1 one.

Similarly

So

= lc*
* * ID*

* *

13 five means 1 five + 3 ones.

13 five = 8 ten'

Now, proceeding to computation, we could ask: What is the standard
numeral in base five for

21 five -I. 13 five

We still mean the same thing by the plus sign, so the above sum is the
number of elements in the union of a set of 21 five elements with a set of
13 five elements:

We see that the number of elements in the union is 3 fives + 4 ones or
34 five.

CIr * * * ID * * * *

* In our decimal numeration system, the base ten is usually not indicated. For example,
the number eleven is usually written "11." When various bases are being considered, how-
ever, one oft-n does indicate the base ten.
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We can display the computation in the same form as for base ten:

211wc + 13 roc .-- (2 fives + 1 one) + (1 five + 3 ones)
= (2 fives + 1 five) + (1 one -t 3 ones)
= 3 fives + 4 ones

341,,,c

21 fivc = 2 fives + 1 one

13 fin = 1 five + 3 ones
3 fives + 4 ones = 34 five.

Remember that we can rearrange addends in a sum because of the
commutative and associative properties of addition of whole numbers.
Since these are properties of addition and are not dependent in any way

on the system of numeration chosen, they may be applied here. These
properties, together with the fact that we are still working with a place-
value system, permit essentially the same addition algorithm as for the
decimal system. Just as in the decimal system, we could use a very ab-

breviated form:

21 five

13 fi
34 five

It is very important to keep in mind that the numbers named in the
sentence

21 five + 13 five = 34 five

are not the same as the numbers named in the sentence

21 ,en + 13 ,e = 34 ten.

If the base-five sentence is translated into a base-ten sentence, it becomes

11 ten + 8 ten = 19 ten*

Now let us consider an example rzquiring regrouping. For the sum

23 five + 14 five

we would think of the union of two sets such as those below.
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By grouping th fives and the ones, we obtain this arrangement:

We see that from the set of ones we can form another group of five,
which is placed with the other fives:

* *

Since we end up with 4 fives + 2 ones, or 42 five objects, we have
23 five + 14 five = 42 five.

Our computation could assume the following form:

23 five = 2 fives 3 ones.
14 five = 1 five + 4 ones.

= 3 fives + (1 five + 2 ones)
= (3 fives + 1 five) + 2 ones
= 4 fives + 2 ones
= 42

In shorter form we could write:
23 five

14 five

42 five

Our thinking would be: "3 ones + 4 ones is 1 five + 2 ones. I'll write
down the 2 and remember the 1 five. Then 1 five + 2 fives + 1 five is
4 fives."

Once again, notice that we arrive at this sort of algorithm because of
the properties of our number system and the positional nature of the
numeration system. No matter what the base is, we are able to use a
similar addition algorithm. Of course, we need to use different numera-
tion "facts" in each system. In base five, for example, we need to use
such numeration facts as

4 five + 2 five = 11 five
and

3 five + 4 five = 12 five.
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All the necessary combinations can be entered in a table analogous to
that used for base ten.

ADDITION TABLE FOR BASE-FIVE

NUMERATION SYSTEM

(All Entries to Be Interpreted as Base-Five Numerals)

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 10

2 2 3 4 10 11

3 3 4 10 1 i 12

4 4 10 11 12 13

Let us use this table to compute

42 five + 34 five

and then we'll check our work by expressing each number h. the
decimal system.

Since

and

42 five

34 five

131 rive

t five =) 4 fives + 2 ones = 22 ten

34 five = 3 fives + 4 ones = 19 ten,

our sum should be 221, + 19 ic, or 41,en. Checking, we see that

131 five = 1 twenty-five + 3 fives + 1 one,

which is indeed equal to 411en.
As a final example, consider the sum

203 five + 44 five.

203 five

44 n_
302 five

Check:

203 five = 2 twenty-fives + 0 fives + 3 ones = ten.

44 five = 4 fives + 4 ones = 24 ten.

302 five = 3 twenty-fives + 0 fives + 2 ones = 77 tent

which is clearly 53 ten + 24 ten.
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Exorcise Sot 4

1. Use the table above to help you compute the following. Check by con-
verting to the decimal system.

a. 32 r + 43 fmc

b. 232 h., ÷ 14 fin

c. 132 five + 204 f

d. l ,3 + 2 4 3 , is.

2. Construct an addition table for a base-eight numeration system and use
it in computing the following sums. Again check by converting to the decimal
system.

a. 42 eight + 15 right

b. 53 eight + 17 eight

c. 63 eight + 120 eight

d. 234 eight + 355 eight

SUMMARY

Children can use various algorithms for computing sums and com-
puting differences. An algorithm is a step-by-step procedure for re-
naming a number. As such, it is possible to learn an algorithm
by merely memorizing certain facts and certain rules. However, children
can have a much more valuable learning experience if they understand
an algorithmthat is, if they can apply basic mathematical principles to
justify each step in the algorithm.
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a x (b + c) (a x b) + (a x c)

MULTIPLICATION ALGORITHMS

AND THE DISTRIBUTIVE PROPERTY

1. What is the distributive property?
2. How do arrays help explain the distributive property?
3. What are partial products?
4. How do we justify the traditional multiplication algorithm?

The new mathematics programs strive to emphasize the ideas of ele-
mentary mathematics. Among these ideas are the whole numbers, the
decimal numeration system, b:'sic operations on the whole num-
bers, and properties of these operations.

Confronted by this emphasis on ideas, teachers may well ask, "What
is the place of computation in the new elementary mathematics? Isn't
the how of arithmetic also important?"

The answer to these questions is that, even in this age of electronic
computers, computation is still important in elementary mathematics
instruction. The new programs do not overlook the how of arithmetic.
However, the techniques, methods, and rules of compatation do
not stand by themselves; they are by-products of the ideas of

mathematics.
Therefore, the new programs strive to make computation processes

more meaningful and less mechanical by developing algorithms out of
the principles of arithmetic. This chapter will exemplify such a t'1,-,7Plop-

ment in the case of multiplication.
Multiplication of whole numbers has four important properties,

summarized below:

The associative property of multiplication
Whenever a, b, and c are whole numbers,

(a x b) xc = ax (b x c).
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The commutative property of multiplication
Whenever a and b are whole numbers,

axb= bxa.
The multiplication property of :

Whenever b is a wi,ole number,
bxl = b and lxb= b.

The multiplication property of 0
Whenever b is a wholt number,
bx0=0 and Oxb= O.

These properties are not sufficient to develop an efficient algorithm for
computing products of whole numbers. Also needed are the properties
of addition of whole numbers which are summarized below:

The associative property of addition

Whenever a, b, and c are whole numbers,
a + (b + c) = (a + b) + c .

The commutative property of addition
Whenever a and b are whole numbers,

a + b = b + a.

The addition property of 0
Whenever b is a whole number,

b + 0 = b and 0 + b = b.

But most important of all to the development of a multiplica-
tion algorithm is a property that involves both multiplication and addi-
tion. This property, the distributive property, is the subject of the early
part of this chapter. The rest of the chapter shows how the distributive
property, along with the properties of multiplication and addition and
the structure of our numeration system, leads to an efficient algorithm
for computing products.

THE DISTRIBUTIVE PROPERTY

The following problem is within the scope of a child in about the
third grade:

Five boys sold boxes of Christmas cards. Each boy sold 3 boxes
on Friday and 6 boxes on Saturday. How many boxes did the boys
sell altogether?

Clearly, there are two approaches to the solution of this problem:
(1) Each boy sold a total of 9 boxes, because 3 + 6 = 9. Since there

were 5 boys and 5 x 9 = 45, there were 45 boxes sold altogether.
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(2) Fifteen boxes were sold on Friday, since 5 x 3 = 15; and 30 boxes
were sold on Saturday, because 5 x 6 = 30. Since 15 + 30 = 45, there
were 45 boxes sold altogether.

The computation in these approaches can be summarized as follows:

Approach (1): 5 A (3 + 6) = 45.
Approach (2): (5 x 3) + (5 A 6) = 45.

If we wish to express the fact that both approaches produce the same
result, we may write:

5 x (3 + 6) = (5 x 3) + (5 x 6).
Without computing the answer, 45, we could have predicted that both
approaches would lead to the same result. To show this, let each box of
Christmas cards sold by the boys be represented by a square, 0.

Then all the boxes sold could be represented by an array of squares:

Sold by first boy
Sold by second boy
Sold by third boy
Sold by fourth boy
So' by fifth boy

O 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
Sold on Sold on
Friday Saturday

We may then view this array in two ways:

0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0

5 boys 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0
O 00000000

3 6
9 boxes

Viewed as a whole, the array
contains 5 x 9, or 5 x (3 + 6),
boxes.

000
0 0 0

5 boys 0 0 0
000
000

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.....m... "%.

3 boxes 6 boxes

Viewed as split into two parts, the
array contains (5 x 3) + (5 x 6) boxes.

Since we are merely viewing the same array both times, the
same number of boxes is represented in each case. That is,

5 x (3 + 6) = (5 x 3) + (5 x 6).

Any array can be viewed in two ways in the same manner. Consider
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a 7-by-8 array, which, because of the definition of multiplication, con-
tains 7 x 8 elements. Let us split this array at various places, then ex-
press the number of elements in the array accordingly.

NUMBER OF ELEMENTS NUMBFR OF ELEMENTS
(Array viewed as a whole)

(Array viewed in two ptirts)

1

7x(3 + 5)

7x(4+4)

O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0
O 0 0
O 0 0
O 0 0
O 0 0

I
O 0 0 0 0 (7 x 3) + (7 x 5)

o o o o o

o o 0 0 o

O 0000

O 0 0 0
O 0 0 0
O 0 0 0
O 0 0 0
O 0 0 0
O 0 0 0
O 0 0 0

O 0 0 0
O 0 o o

o o o o

O 0 0 0 (7x4)-1-(7x4)

o 0 o o

o o o o

O 000

O 0 0 0 0 0
O 0 o o 0 o

O 000o 0
7x(6-1-2) o o o o o e

o o 0 0 o o
o o o o o o
O 00000

o o

o 0

o 0

O 0 (7x6)+ (7 x2)

O 0
O 0
O 0

Thus, we see that the following statements are true:

7 x (3 + 5) = (7 x 3)1- (7 x 5).

7x(4+4).(7x4)-1-(7x4).

7x(61-2).(7x6) +(7x2).

These statements and the one shown previously,

5x(3+6)=(5x3)+(5x6),
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exhibit a pattern. What is this pattern?
5x(3 +6) (5 x 3) + (5 x 6).

On the left of the equal sign is
a product. One of the factors is
expressed as a sum.

On the right of the equal sign
is a sum. Both of the addends are
expressed as products.

5x(3+6)= (5 x 3) + (5 x 6).

The addends of this sum appear again here.
The general pattern becomes explicit if we let a represent 5, b repre-

sent 3, and c represent 6. Then the sentence we have been examining
becomes

a x (b + c) = (a x b) + (a x c).
It is a fact of arithmetic that this pattern holds for all whole num-

bers a, b, and c. In other words, it is a general property of multiplication
and addition that

Whenever a, b, and c are whole numbers,
a x (b + c) = (a x b) + (a x c).

This property is called the distributive property of multiplication
over addition.

So far we have only looked at examples of this property. Let us now
consider a way to show that the property holds for all whole numbers.
We merely resort to the same array argument that we used in the ex-
ample dealing with boys and boxes. However, this time the numbers
are arbitrary.

Consider an array with m rows and n columns (m n can be any
whole numbers).

m rows

X X X x
X X X X
X X X X
X X X X

......... e
X X X X

X

X X

X X

X X

X X

n columns

Let us split this array vertically into two parts by thinking of n as a sum,
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p + q, and then splitting the array into p columns and q columns.

n columns
X X X x X X X x

x x x x x x x . x

m rows
x x x
.

x x x x . x

x x x x X X X x

p columns q columns

If we look at the array as a whole, the number of elements is
m x (p + q).

Multiplying m and (p + q) is the same as multiplying m and n.
If we see the array as split into two parts, the number of elements is

(m x p) + (m x q).
Therefore, for all whole numbers m, p, and q,

m x (p + q) = (m x p) + (m x q).
This is a formal statement of the distributive property of multiplication
over addition.

Children may be introduced to the distributive property by
trying various numbers for the frames in the sentence

A x (0 + 0 ) = (A x 0) + (A x o ).
They will find that any numbers for L, , and 0 will make a
true statement.

Exercise Set 1

1. Complete these sentences, using the pattern of the distributive property.
a. 8 x (6 -F_.) = (8 ): 6) + (8 x 3).

b. _x (4 + 7) . (6 x 4) -F (.__,x 7).

c. 3 x (_ + 5) . (3 x 6) + (3 x_).

d. 6 x(7 + 8) = (6x___)+ (_x 8).

2. Write a sentence of the form m x (p + q) = (m x p) + (m x q) suggested
by each of these arrays:
a.

4x(8-F3).(4x8)+(4x3)
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X X

X X

X X

X X

XX

YYYYYYYYYY
YYYYYYYYYY
YVYYYYYYYY
YYYYYYYYYY
YYYYYYYYYY

YYY
YYY
YYY
YYY
YYY

3. Draw an array illustrating this example of the distributive property:
3 x (5 + 4) = (3 x 5) + (3 x 4).

4. Complcte these sentences with standard numerals:
a. 5 + 18 =____. c. (5 + 2) x (5 + 9) = ____x ____ =

b. 5 + (2 x 9) =

Is addition distributive over multiplication?

USING THE DISTRIBUTIVE PROPERTY

The distributive property may be used as early as the second grade.
Suppose that the pupils are learning multiplication combinations in-

volving 5 as a factor. Suppose also that they already know the
multiplication combinations through 4 x 4. How can they learn, for ex-
ample, that 4 x 5 = 20? They can memorize this combination in rote
fashion; they can draw a 4-by-5 array and count it; or they can use the
distributive property in the following way:

Since 5 = 2 + 3,
4x5 = 4 x(2 + 3).

Because of the distributive property,
4 x(2 + 3).(4x 2)+(4 x3).

But
(4 x 2) + (4 x 3) = 8 + 12, or 20.
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Therefore
4 x 5 = 20.

The reasoning used above may be displayed as follows:
4x5 = 4 x(2 + 3)

= (4 x 2) + (4 x 3)
= 8 + 12
= 20.

This procedure can be further illustrated by utilizing arrays:

4

gamer Nmeteime

2 3

4 x 5 = (4 x 2)+ (4 x 3).
In this way, more difficult multiplication facts are made to depend

upon easier multiplication facts. If a child temporarily forgets that
4 x 5 = 20, he may be able to refresh his memory by using the distrib-
utive property.

In the example above the distributive property was used to "obtain,"
as we say ,"(4 x 2) + (4 x 3)" from "4 x (2 + 3)." We may think of dis-
tributing "4" over "2 + 3":

4 x (2 + 3) = (4 x 2) + (4 x 3).
This way of thinking of the distributive property, in which "a x (b + c)"
is given and "(a x b) + (a x c)" is obtained, is important in computation.
It asserts that these two expressions always name the same num-
ber. From the distributive property it follows, for example, that

6 x (4 + 9) = (6 x 4) + (6 x 9),
so that either expression, "6 x (4 + 9)" or "(6 x 4) + (6 x 9)," may be
used in place of the other.

A "reverse" use of the distributive property to facilitate computation
is the following:

What is the sum of 5 x 97 and 5 x 3?

We wish to compute (5 x 97) + (5 x 3). The straightforward way is
to compute 5 x 97 = 485 and 5 x 3 = 15, then add 485 and 15. An easier
way is to observe that the expression (5 x 97) + (5 x 3) is in the form
(a x b) + (a x c). Using the distributive property, we obtain

(5 x 97) + (5 x 3) = 5 x (97 + 3).
But

5 x (97 + 3) = 5x 100, or 500.
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So we have

(5 x 97) + (5 x 3) = 500.

The above examples have utilized one form of the distributive prop-
ertynamely, the form a x (b + c) = (a x b) + (a x c). However, we
should not rely exclusively on this form. The distributive property can
take another form.

Consider the statement
9 x (10 + 7) = (9x 10) + (9 x 7).

Let us replace "9 x (10 + 7)" by "(10 + 7) x 9"; both expressions name
the same number because multiplication is commutative. Also, let us re-
place "9 x 10" by "10 x 9" and "9 x 7" by "7 x 9." Then the statement

(10 + 7) x 9 = (10 x 9) + (7 x 9)
is true. The form of this statement is

(b + c) x a = (b x a) + (c x a).
We should also learn this form of the distributive property. In ;act, this
form will arise in our later work with multiplication computation.

An array to illustrate the form
(b + c) x a = (b x a) + (c x a)

for the example

is the following:
(10 + 7)x 9 = (10 x 9)+(7 x9)

9

10.

9

10 +7
rows

10 x 9

7 0 7 x 9

0

0

0 6-.mi..
9 columns
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Memorization of multiplication combinations usually ceases at
9 x 9 - 81. Hots do we compute products when one of the factors ex-
ceeds 9? We can use the distributive property to good advantage.

EXAMPLE: Compute the product of 16 and 7.

Solution I: We may rename the larger factor, 16, as a sum of num-
bers less than 10 let us say 9 + 7.

16 x 7 = (9 + 7) x 7.

We then use the distributive property,
(9 + 7) x 7 = (9x 7) + (7 x 7):

and, if we know the combinations through 9 x 9 = 81, we find that
(9 x 7) + (7 x 7) = 63 + 49, or 112.

Therefore,
16 x 7 = 112.

Solution 2: We may express the product 16 x 7 as 7 x 16. We can re-
name 16 in various ways as a sum of numbers less than 10. For example,
we can say 8 + 8.

7 x 16 = 7 (8 + 8) (Renaming 16 as "8 + 8")
= (7 x 8) + (7 x 8) (Using the distributive

property)

= 56 + 56 (Renaming 7 x 8 as "56")
= 112. (Addition computation)

7 1
J

."---..--www000".
16 = 3 + 8.

7 x 16 = 7 x (8 + 8)
= (7 x 8) + (7 x 8).

These two computations had three things in common:
1. We expressed the factor greater than 10 as a sum.
2. We used the distributive property.
3. We relied on our knowledge of multiplication computation and our

ability to compute sums.
Notice that we could rename the greater factor in several ways and

we could use the distributive property in either of two forms.
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A further extension of the distributive property will allow us to com-
pute products such as 5 x 24, relying only on combinations through
9 x 9 = 81. Let us look at a 5-by-24 array:

24

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

If we split the array vertically into two parts, the number of columns in
at least one part will still exceed 10. So let us split the array into three
parts:

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

0

0

0

0

0

0 0
c 0
0 0
0 0
0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

9

0

0

0

0

0

0
i

0

0' 0
0 0
0 0
0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0
0 0
0 0
0 0
0 0

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

This arrangement is equivalent to renaming 24 as "7 -i- 9 + 8." Splitting
the array shows that

5 x (7 + 9 + 8) . (5 x 7) + (5 x 9) + (5 x 8).
We can then proceed, as before, to compute the sum 35 + 45 + 40, or
120, as the product 5 x 24.

The technique used in this section for computing products will be ex-
tended and refined in the succeeding sections.

Exercise Set 2
1. Which property assures that the following statements are true? Write D

for the distributive property, A for the associative property of multiplication,
and C for the commutative property of multiplication.

a. 3 x (4 + 5) = (3 x 4) + (3 x 5)_
b. 3 x(4 x.5).(4 x5)x3._

c. (4 + 5)x3 .(4 x3)+(5x3).___

d. (4 x 3) + (5 x 3) = (5 x 3) + (4 x 3)._

c 3 x(4 x5).(3x4)x5._
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2. Use the distributive property to compute the following products. ;Assume
that the multiplication through 9 x 9 = 81 are the only ones known.)

a. 6x 14 = 6 x (9 ; = (6 x 9) + (6 x 5) = 54 + 30 = 84.

b. 7 x 15 =

c. 13 x 8 =

d. 26 x 6 =

3. Use the distributive property to find a standard numeral for each of these
expressions:

a. (18 x 3) + (2 x 3) = (18 + 2) x 3 = 20 x 3 60.

b. (98 x 2) + (2 x 2) =

c. (6 x 189) + (6 x 11) =

AN ALGORITHM FOR MULTIPLICATION

To compute the product of two whole numbers means to find
the standard numeral for the product. or example. to compute
the product of 35 and 6 means to find the nymeral "210" to name
35 x 6.

Why should we be interested in a systematic procedure, or algorithm,
for computing products? Because we want to be able to compute the
product of any two whole numbers, and we want to perform the com-
putation with reasonable speed and accuracy.

In the previous section we showed how the distributive property can
be used to compute products such as 7 x 14 (that is, products in which
one factor is less than 10). If the computation of 7 x 14 is performed by
three of your pupils, they may all do it differently. For example:

Susan John
7x 14= 7 x (5 + 9) 7 x 14 = 7 x (8 +6)

= (7 x 5) + (7 x 9) = (7 x 8) + (7 x 6)
= 35 + 63 = 56 + 42
= 98. = 98.

Mary
7 x 14 = 7 x (7 + 7)

= (7 x 7) + (7 x 7)
= 49 + 49
= 98.
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These three computations differ merely in the way in which the greater
factor is renamed. Among the various possible ways to rename 14, is
there a paTticularly convenient way? The easiest renaming of 14 makes
use of the meaning of the numeral "14," namely, that "14" means 1 ten
and 4 ones.

14= 10 + 4.
So, to compute 7 x 14, we write

7 x 14 = 7 x (10 + 4)
and, using the distributive property,

7 x (1G + 4) = (7x 10) + (7 x 4).
Now, even if combinations through 10's are not memorized, we know
that 7 x 10 is 7 tens, which is 70. So

(7 x 10) + (7 x 4) = 70 + 28 98.

Let us try this same technique to compute 8 x J.

3x56 = 8 x (50 + 6).
We rename 56 as "50 + 6," because 50 + 6 is an "expanded form" of 56.
Then we use the distributive property:

8 x (50 + 6) = (8 x 50) + (8 x 6).
Now we need to compute 8 x 50. We may use the associative property
of multiplication:

8x50 = 8 x(5 x10)
= (8 x 5) x 10
= 40 x 10
= 400.

But children will soon learn that to compute 8 x 50 they need only com-
pute 8 x 5 = 40 and attach the digit "0" to the numeral "40," thus ob-
taining "400."

So the complete computation of 8 x 56 would appear as follows:
8 x 56 = 8 x (50 + 6)

= (8 x 50) + (8 x 6)
= 400 + 48
= 448.

As long as we restrict one factor to the numbers less than 10, we can
use this technique for any multiplication computation, because any
whole number can be named in "expanded form." For example:

To compute 8 x 72, we rename 72 as "70 + 2."
To compute 6 x 146, we rename 146 as "100 + 40 + 6."
To compute 9 x 684, we rename 684 as "600 + 80 + 4."

Then we proceed to apply the distributive property. Clearly, our place-
value numeration system plays a vital role in this method of computa-
tion, just as it did in addition and subtraction computations.
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When the greater factor has 3 digits, as in the product 9 x 684, we
extend the distributive property as wt.. did on page 119 of this chapter.

9 x 684 = 9 x (600 + 80 + 4)
= (9 x 600) + (9 x 80) + (9 x 4)
= 5,400 + 720 + 36
= 6,156.

(Schemati,..) 684

600 + 80 + 4

91 := 5,400 = 720 = 31
(9 x 600) (9 x 80) (9 x 4)

9 x 684 = 6,156.

Computations of this type can be arranged in a "vertical form." Con-
sider 9 x 684 again. We may write:

Method A Method B
600 + 80 + 4 or 4 + 80 + 600

x 9 x 9

5,400 + 720 + 36 = 6,156 36 + 720 + 5,400 = 6,156.

Since an addition computation is required after using the distributive
property, it is convenient to list 5,400 and 720 and 36 vertically:

Method A
684
x9

5,400
720

36
6,156

or

Method B
684
x 9

36
720

5,400
6,156

When using this vertical arrangement, we mentally rename 684 as
600 + 80 + 4, then use the distributive property. In Method B, 9 x 4 = 36
is computed first, then 9 x 80 = 720, then 9 x 600 = 5,400. We may
now pass to a shortcut for the whole process. The shortcut may be de-
scribed as follows:

STEP 1. Write "684," and "9" vertically below it. Mentally rename
684 as "600 + 80 + 4." Compute 9 x 4 = 36, but write only the "6" of
the "36" in the ones column. Remember the 3 tens of 36.

684
x 9

6
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STEP 2. Compute 9 x 80 .-- 720. Add the 3 tens, or 30, to 720 to
obtain 750. Write "5" in the tens column and remember 7 hundreds.

684
x9

56

STEP 3.- Compute 9 x 600 = 5,400. Add the 7 hundreds to 5,400
to obtain 6,100. Write "1" in the hundreds column and "6" in

the thousands column.
684
x 9

6,156

This final shortcut, if presented as the only way to compute products,
could easily obscure the use of the expanded form of the distributive
property. Therefore, it should be presented as the last in a sequence of
forms for recording the computation of products.

In the next section we shall remove the restriction that one factor be
less than 10 and thus develop an algorithm for computing the product
of any two whole numbers.

Exercise Set 3

1. Express each of the following numbers in an expanded form:
a. 157 = 100 + 56 + 7.

b. 259 =

c. 35 =

d. 4,560 =

e. 408 =

2. Complete these sentences by renaming the larger factor in an expanded
form and by using the distributive property.

a. 7 x 16 = 7 x(10 +___)

= (7 x.....) + (7 x _)

= 70 +

=

b. 5 x 97 = 5 x( +_)
= (5 x ) + (5 x ____)

= + 35

=-
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c. 3 x 655 = x (600 + 50 + 5)

600) + 50) x 5)

+ +

3. Identify parts of these computations by filling in the blanks.

a. 147 b. 1,508

x 4 x 3

28 *-- 4 x i 24 x

160 + -- 4 x 1,500 *--- x

400 *-- x 3,000 x

588 *-- 4 x 4,524 4-- x

EXTENDING THE MULTIPLICATION ALGORITHM

We now extend the multiplication algorithm to computation of
products such as 43 x 59, 43 x 257. 125 x 356, etc. We do not restrict
the size of either factor. We shall again depend upon the place-value
property of our numerals and the distributive property. Moreover, we
shall assume the results of the previous sectionnamely, an algorithm
for computing a product when one of two factors is less than 10.

Let us proceed step by step to compute the product 43 x 59.
We rename the first factor, 43, in expanded form:

40

3

59

40 x 59

3 x 59

43 x 59 = (40 + 3) x 59.

Then we distribute the other factor, 59, over the sum 40 + 3. We shall
use the distributive property in the form

(b + c) x a = (b x a) + (c x a),
obtaining

(40 + 3) x 59 = (40 x 59) + (3 x 59).
Now we rename 40 as 10 x 4 to obtain

(40 x 59) + (3 x 59) = (10 x 4 x 59) + (3 x 59).
Notice that we now need to compute 4 x 59 and 3 x 59. These com-
putations are the kind explained in the previous section, so we assume
they can be performed.

59 59

x 4 x 3
236 177
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We then arrive at this statement:

(10 x 4 x 59) + (3 x 39) = (10 x 236) + (177).

We also assume that a method for multiplying by 10 is known.

(10 x 236) + 177 =2,360 + 177
= 2,537.

Therefore,

43 x 59 = 2,537.

The entire computation of 43 x 59 may be displayed as follows:

4G

+
3

40 x 59 = 2,360. .-----

3 x 59 = 177.

43 x 59 = 2,537.

43 x 59 = (40 + 3) x 59
= (463x 59) -I- (3 x 59)

,,,.------ = (10 x 4 x 59) + (3 x 59)
= (10 x 236) 4. (177)
= 2,360 + 177
= 2,537.

____-.),

Notice that the two multiplication computations that had to be done
along the way were 4 x 59 = 236 and 3 x 59 = 177. If we write 43 and
59 in vertical feral we can easily perform the two in-
termediate computations. We first compute 3 x 59 and
write; 177.

Then we compute 4 x 59, but we write 2,360 (since
4 x 59 is also multiplied by 10).

We then add 177 and 2,360.
The extension of this algorithm to factors with three or more digits does
not involve any new ideas, but the computation gets longer and more
complicated.

Computation of products such as 43 x 59 may be performed by
a longer method than the one we have so far explored. We begin
as before:

59 59
x 43 x 43
177 177

2,360
2,537

43 x 59 = (40 + 3) x 59

= (40 x 59) + (3 x 59).

But now 59 is also renamed in expanded form,
43 x 59 = [40 x (50 + 9)) + [3 x (50 + 9)1,

and the 40 and 3 are distributed over the 50 + 9:
43 x 59 = (40 x 50) + (40 x 9) + (3 x 50) + (3 x 9).
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At this stage, pupils will need to know how to compute these products:
50 +9

and

40 x 50 = 2,000,
40 x 9 = 360,
3 x 50 = 150,

3 x 9 = 27.

40
+

3

40 x 50 40 x 9
= 2,000. = 360.

3 x 50 = 150. 3 x 9
= 27.

The computation of 40 x 50 = 2,000, for example, can be carried out
by rearranging factors:

40 x 50 = (40x 10) x (5 x 10)
= (4 x 5) x (10 x 10)
= 20 x 100

= 2,000.

43 x 59 = 2,000 + 360 + 150 + 27
= 2,537.

The traditions: algorithm combines certain partial products as

follows:
Longer Vertical Form Traditional Vertical Form

59 59
x 43 x 43

27

60
150 2,360-----4
.)

+ I 77

2,537
2,000
2,537

The longer vertical form can be valuable in teaching a multiplication
algorithm to slower students. It can also be used profitably with all stu-
dents to review the principles underlying the traditional multiplication
algorithm.

Exercise Set 4

1. Complete these sentences:
a. 21 x 32 = (20 + 1) x 32

= (20 x_...) + (1 x,_)

= (10 x ____x 32)-1- (i x_.)

= (10 x__)-1-

= +

=
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b. 34 x 156 . (30 + )x

. (30 x ) + ( x 156)

3 x 156) + (__ x 156)

( x 468) +

+

2. Draw an array to depict
16x 12= (10x 10) + (10 x 2) + (6x 10) + (6 x 2).

SUMMARY

We have used the properties of multiplication and addition and the
structure of our numeration system to develop methods of computing
products. The property we leaned upon most heavily is the distributive
property of multiplication over addition:

For all whole
numbers, a, b, and c,

ax (b + c) = (a x b) + (a x c).

We used the structure of our numeration system by renaming factors
in expanded form.

The properties of multiplication and addition, commutativity and as-

= (20 x 308)
+ (1 x 308)

This step is an application of the distribu-
tive property, in a form arrived at through
the commutative property of multiplica-
tion.

sociativity, were used whenever we rearranged factors or addends.
To show how many of these properties are used in a single computa-

tion, we shall compute the product 21 x 308 in detail and explain the
justification for each step:

21 x 308 = (20 + I) x 308 Naming 21 in expanded form makes use
of the place-value idea of our numeration
system.

= (10 x 2 x 308)
+ (1 x 308)

Naming 20 as 10 x 2 uses the numeration
system. Writing 3 factors (10, 2, and 308)
without parentheses uses the associative
property of multiplication.
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. (10 x 616) + 308 Computing I x 308 = 308 uses the mul-
tiplication property of 1. Computing
2 x 308 uses several properties.

= 6,160 + 308 Computing 10 x 616 uses the structure of
the numeration system.

= 6,468. The addition algorithm uses several
properties of addition.

All of this reasoning occurs "behind the scene" when we write the
short form of the multiplication algorithm.

308
x 21

308
6,160
6,468

This shortcut is brief, efficient, convenient to write and print. It has
been in use since the fifteenth century. However, the justification
we have given for the method, in terms of properties of multiplication,
addition, and numeration, was not provided until the nineteenth
century.

The algorithm developed in this lesson is certainly not the only
algorithm for multiplication of whole numbers. It is popular today be-
cause of its brevity and convenience. Other algorithms have been used,
but have become unpopular for various reasons. One algorithm, often
called the net, or grating method, and also) dating to the fifteenth
century, is described below. According to D. E. Smith, "the method is
very old and might have remained the popular one if it had not been
difficult to print or even to write the net."

Let us see how to compute 87 x 152 by the grating method. We begin
by drawing the grating and writing the factors as follows:

1 5 2

Each digit is treated as a single number regardless of its place value.
The product of 8 and 2 is recorded in the square where the 2 column
and the 8 row intersect; the tens digit of 16 is placed above the diagonal,
the ones digit below the diagonal. We continue in this fashion, multiply-
ing 8 by 5, 8 by 1, 7 by 2, 7 by 5, and 7 by 1, always writing the tens
digit above the appropriate diagonal and the ones digit below.
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1 5 2

%KA
°ALA 7

Then we shift our attention to the digits in the grating and regard them
as being in slanted columns.

We add the numbers named in these slanted columns, beginning at the
lower right and "carrying" from column to column.

1

3

°AKA
AMP

2 2 4

The product is then named by using the numerals appearing at the
left edge and at the bottom of the grating.

87 x 152 = 13,224.
What properties do you think are needed to justify the grating

method?
Any algorithm requires practice to be useful, and elementary school

pupils will need to spend a large amount of time practicing the multipli-
cation algorithm that we teach today. If pupils learn why the algorithm
works and what the steps accomplish, their practice in computing will
be less trying.
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1. What interpretation of "quotient" is a basis for
the traditional division algorithm?

2. What is a partial quotient?

3. How does the distributive property help justify
the traditional algorithm?

4. What important skills are needed in order to use
the traditional division algorithm efficiently?

5. As compared with the traditional division algorithm,
what are the advantages of the algorithm in which
the partial quotients are listed vertically?

ELEMENTARY APPROACHES TO DIVISION

If you gave your pupils the following problem, how would you expect
them to solve it?

EXAMPLE 1: A teacher has 12 chocolates that she plPris to give to
some children. If each child will get 3 pieces, how many cl. .dren can re-
ceive candy?

Your expectations, of course, would depend upon the previous ex-
perience of the pupils with this type of problem. Let's begin with the
simplest technique a child could use and then develop other approaches
to the solution of the problem.

Otinc=nti ennnonn
A child's first approach to a situation of this type would probably be to
separate the set of 12 chocolates into equivalent subsets,* each subset
containing 3 pieces.

* This terminology need not be used with younger pupils.
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CDto
Upon checking the results, the child determines that he has 4 groups;
thus, the candy would be given to 4 children.

When students reach the stage at which they are ready to develop an
algorithm for division, they can resort to their knowledge of subtraction.
An algorithm that most closely resembles the use of equivalent subsets
is given below:

EXAMPLE 1 (a second approach):

12 = number of elements in the original group.3 1

9 How many threes can we subtract,
3 1 starting with 12? Four.
6
3 1

3

3 1

0 4
Let us try this method on another problem.

EXAMPLE 2: Jim has 30c to spend on apples. If each apple costs
6c, how many apples can he buy?

Solution:
30
6 1 How many sixes can we

24 subtract, starting with
6 1 30? Five.

18

6 1

12

6 1

6.6 1

0 5

The method used for solving Examples I and 2 is usually called the
repeated-subtraction procedure. Why are we able to obtain the answer
to a division problem by repeated subtraction? At the physical
level, division is related to finding how many equivalent subsets of a
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given size can be formed from a given set. Therefore, one interpretation
of division is analogous, at the number level, to subtracting the divisor
repeatedly.

The process of repeated subtraction, adequate as an introductory
algorithm, is a relatively crude method. However, as we develop more
efficient algorithms, we shall see that they are modifications of the pro-
cess of repeated subtraction. Even when working with large numbers we
are using a refined form of repeated subtraction.

DIVISION RELATED TO MULTIPLICATION

Another approach to developing an efficient division algorithm
is based on the relationship between multiplication and division.

Multiplication Situation

EXAMPLE 3: While looking
through his stamp book, Jim
notices that on a certain page
he has 5 rows of stamps with
each row containing 6 stamps.
How many stamps are on this
page?

This problem could be ex-
pressed in the following manner:

5 x 6 = .
1 I I

factor factor missing
product

Division Situation

EXAMPLE 4: Jim bought 30
stamps that are to be placed
on a certain page in his stamp
book. He wishes to have 5 rows
of stamps on this page. How
many stamps will he need to
place in each row?

If we think of a division situa-
tion as one in which we determine
the missing factor this problem
can be expressed ir the following
manner:

5 x = 30.

I I I
factor missing product

factor

The child's knowledge of his
multiplication combinations will
enable him to determine the
missing factor.

5 x 6 = 30.

The mathematical sentence
5 x = 30

can also be written in the form

132
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The two mathematical sen-
tences above show an inverse re-
lationship of multiplying by 5
and dividing by 5.

In the solution of Example 4, the missing factor, 6, is the quotient of
the pair of numbers 30 and 5. In a division problem, no matter what
process you use for determining the quotient of two numbers, you are
basically finding the missing factor.

Another way to deal with a division problem is to give it a geometric
interpretation. Let us consider the following example:

EXAMPLE 5: The seniors need ribbon badges to identify ushers for
their class play. They decide to make each badge 5 inches long. If they
buy 30 inches of ribbon, how many badges can they make?

This situation can be represented on a number line as follows:

s 5

10 16 20 25 30

The diagram shows that exactly six 5-inch badges can fit end to end,
thereby showing that the answer to the problem

El x 5 = 30

I
missing factor

is E x 5 = 30, or E = 30 ÷ 5.

DIVISION MAY NOT BE POSSIBLE WITH WHOLE NUMBERS

Thus far we have been working with pairs of whole numbers
fc which it is possible to determine the missing factor. Now let's
examine a situation in which this is not possible. Suppose Example 1
had stated that the teacher had 13 chocolates. Using repeated subtrac-
tion, we have

13

3
10

3
7

3

4
3

1

We have subtracted 3 four times, but we have 1 chocolate left over.
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The physical solution and the repeated-subtraction process yield
similar results whether we begin with 12 or with 13 chocolates.
But when we express the situation in terms of a missing factor,
dealing with 12 chocolates is different from dealing with 13 chocolates.
For when we start with 12 chocolates, it is possible to obtain a whole
number for the missing factor:

that is,

0 x 3 = 12;

I
missing
factor

4 x 3 = 12.
But when we have 13 chocolates, there is no whole number that will
satisfy the condition

0 x 3 = 13.
In general terms, if a and b are whole numbers, then the mathematical
sentence O x a = b cannot always be "satisfied" by a whole number.
But it is always possible to find a pair of whole numbers that will satisfy
the following sentence for any given whole numbers a and b:

(0 x a) + A . b.
In fact, we can usually find several such pairs. For example, in the case
of the 13 chocolates, we could write the following mathematical
sentences:

(

(

4

Ell

x 3) + ©= 13, or

x 3) + & = 13.

Let's look at another situation of this type.

EXAMPLE 6: Five girls plan to share equally a half-pound of cookies
that they have bought. When they count the cookies they find that there
are 33 cookies. What is the maximum number of cookies each girl can
receive?

A mathematical sentence that attempts to express this problem is
33 = 0 x 5.

But there is no whole number that will satisfy this sentence. However, if
we express our problem with the mathematical sentence 33 = (0 x 5) +A,
the following relationship does hold:

33 = ( 6 x 5) + A.
Interpreting this mathematical sentence in terms of the problem, we say
that each girl could receive 6 cookies and there would be 3 extra cookies.
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The following example illustrates one way to develop an understand-
ing of division ,::omputation involving a remainder.

EXAMPLE 7: Determine a pair of whole numbers that will make the
following sentence true:

34= ( x7) +0.
When we examine this sentence, we find that there

of whole numbers that will satisfy the sentence.

(1) 34 ( x 7) + A.
(2) 34 = x 7) + A.
(3) 34 = x 7) +

(4) 34 = x 7) +

(5) 34 = ([1Ix 7) + /\.

are several parrs

The answer in (5) is the one having the smallest whole number that
can be represented in the triangle and the largest one in the square.
[Note that each number represented in the triangle is greater than 7 except
for example (5).]

In special cases, the smallest whole number fortheQ is 0. For example:
35 = (1:9 x 7) + A.

In this case, 5 and 7 are factors of 35. This corresponds to the situation
previously treated.

Exercise Set 1

1. For each mathematical sentence given below, determine a pair of whole
numbers that will make the sentence a true statement. Try to determine a pair
of numbers such that the number represented in the triangle will be the least
possible (and the number in the square, therefore, the greatest).

a. 23= ex5) +Q.
b. 5 = (Ellx 7) + A.
c. 6 = x 6) +

d. 97 = x 9) + Q.

38 = (0 x 6) +
f. 31 = ex 4) +
a. 0 = (EJ x 8) + Q.

h. 61 = (0 x 20) +

NOTE. The frames are helpful in mathematical sentences of this type, partic-
ularly for the younger pupils. Later, another way of writing these sentences will
be showna way that can be used with older students.

2. After solving problems la - 1 h, examine the number represented in the
triangle. If you are successful in determining the least whole number for the
triangle that makes the sentence true, what re; itionship does this number have
to the given factor?
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3. For those problems (la - 1h) in which you were able to determine the least
whole number to be represented in the triangle, see how many different num-
bers you can represent in the square. For example, in the problem la you should
have found that 3 is the least number to be represented in the triangle.

23 = (al x 5) + A.
Retaining 3 for the triangle,

23 = (0 x 5) + A,
is it possible to determine values other than 4 for the square so that we still have

a true mathematical sentence?

EXTENDING THE DIVISION IDEA

What do relationships of the type given in Exercise Set I have to do
with division? In Example 6 (the problem of sharing the 33 cookies),
we found that the symbol 33 ÷ 5 has no meaning in the set of whole
numbers. That is, the following condition cannot be satisfied by a whole

number:
33 = 0 x 5.

But we can form the following true statement:
33 = (6 x 5) + 3.

This sentence describes an extension of the ideas of division. Of course,
if we had fractional numbers at our disposal, we could define the opera-
tion of division in terms of a missing factor. But since we are working
with whole numbers only, we must extend our idea of division and ex-
press it in the following way:

For any pair of whole numbers a and b, where b # 0, it
is always possible to determine a, pair of whole numbers q
(quotient) and r (remainder) such that

a = (q x b) + r, and r < b.

a: dividend b: divisor
q: quotient r: remainder

(By stipulating that r must be less than b, we find the greatest q possible.)
Let's see how we might use the above relationship to solve a problem.

EXAMPLE 8: Dick has 61 stamps to be placed on a certain page of
his stamp book. He wishes to arrange them in rows so that there will
be 8 stamps in each row. How many complete rows of 8 can he have?
How many stamps will remain?

Solution: The following sentence describes the relationship in this
problem:

61 = (q x 8) + r and r < 8.
To fulfill the requirements of the problem, we must find a quotient q
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and a remainder r such that the above mathematical sentence will be
true. By trial we find that

61 = (7 x 8) + 5.
The following array interprets this relationship in terms of stamps on a
page of the stamp book:

Row 1

2

3

4

5

6

7

4-- 8 stamps per row

Remainder = 5.

Dick will have 7
complete rows
with 5 stamps
loft over.

Exercise Set 2

For the following mathematical sentences, determine the numbers that will
make each sentence true, selecting for r the smallest number possible.

1. 75 = (q x 6) + r.

2. 120 = (q x 12) + r.

3. II= (qx7) +r.

4. 6 = (q x8) + r.

5. 15 = ((ix 15) + r.

In Example 5 we gave a number-line interpretation of a simple divi-
sion situation. We can also give a number-line interpretation to this ex-
tension of the idea of division. Referring to Example 5, let us assume
that the senior class buys 1 yard (36 inches) of ribbon to make 5-inch
badges. How many badges can be made, and how much ribbon
will remain?

<175 6 5 5 5 5 5 --I

1,1 imilli li., it It... mi.>
0 1 2 3 4 5 10 15 20 25 30 35

The diagram shows that seven badges can be made, with one inch of
ribbon left over. This situation may be expressed as follows:

36 = (7 x 5) + 1.
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...

DIVISION WITH LARGE NUMBERS

Thus far we have been working with small numbers, for which our
knowledge of multiplication "facts" enabled us to determine a :solution
by inspection. Let us consider a mathematical sentence involving larger
numbers, for example:

138 = (q x 17) + r.

We could use repeated subtraction, as we did before; that is, we could
subtract the divisor repeatedly. But, instead, let us work with multiples
of the divisor. Let us try to rename 138 as a sum of a multiple of 17
and a remainder. Let's make a guess and use 5 x 17, or 85, as our mul-
tiple of 17. Then we have

138 = 85 + 53
= (5 x 17) + 53.

But 53 > 17, so let us rename 53 as a sum of two addends with at least
one of the addends a multiple of the divisor (17). Since 5 x 17 > 53,
let us try 3 x 17, or 51. Then 53 = (3 x 17) + 2, and we now have

138 = (5x 17) + [(3x 17) + 2].
Using the associative
property of addition, we have
Using the distributive
property, we have

Computing the sum of
5 and 3, we have

Therefore
Thus, we have determined
that

. . = [(5 x 17) + (3 x 17)] + 2.

= [(5 + 3) x 17] + 2.

= [(8) x 17] + 2.
138 = (8 x 17) + 2.

q = 8,-1 Ir = 2.

Notice that the process terminates because our remainder, 2, is less than
the divisor, 17. If our remainder had been greater than 17, the process
could have been continued until the remainder became less than
the divisor. To deal with larger numbers, we develop algorithms that
will simplify the work for the student.

First steps in leading students to develop an efficient algorithm can
begin with the method discussed below:

EXAMPLE 9: Jack is helping his father get eggs ready to take to market.
His task is to place the eggs in cartons; each carton holds 12 eggs. If he
has 159 eggs to box, how many cartons will he have and how many
eggs will be left over?

The relationship for this problem may be expressed by
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159 = (q x 12) + r and r < 12.
Remember that we are trying to determine two numbers q and r that
will meet the following requirements:

I. 159 = (q x 12) + r.
2. r < 12.

Let us use an organized way of estimating the answer:

I x 12 = 12; 12< 159.
10 x 12 = 120; 120 < 159.

100 x 12 = 1200; but 1200 > 159.

Therefore our quotient, q, is in the interval between 10 and 100, and is
closer to 10 than to 100. So let us check the following products:

11 x 12 = 132; 132< 159.
12 x 12 = 144; 144< 159.
13 x 12 = 156; 156 < 159.

We can see that (159 156) < 12; therefore, the mathematical sentence
for our problem may be written as

159 = (13 x 12) + 3.

Answer: Jack will have 13 cartons with 3 eggs left over.

REFINING THE ALGORITHM

Now that we have developed the necessary background, a next step in
refining our algorithm might consist of the following procedure: Recall
the repeated-subtraction process used at the beginning of this chapter.
We shall use that process as the basic idea; but, instead of subtracting
the divisor once for each step, we shall subtract multiples of the divisor.

EXAMPLE 10: 138 = (q x 7) + r.

7)138 Teacher: How many sevens do you
think we can subtract from 138?

35 5 (5 x 7 = 35) Sue: 5.
103 Bob: 10.

Don: 11.

Teacher: We could try all of these
suggestions. Let's try 5 first.f After
subtracting the 5 sevens, we have
103 left. Can we subtract any
sevens from 103?

t Of course, when the suggestions made by Bob and Don are followed. the children
will note that there is less written work. Later, child= will be encouraged to try mul-
tiples of 10 (and powers of 10) as partial quotients.

--139--



Mathematics for Elementary School Teachers

8

20

30

25

3
86

9 )781
27

754
90

664
450
214

90
124
45
79
72

7

3

I0

50

10

5

8
86

140

9 ) 781
45

736
45

691
108

583
108

475
108
367
108
259
108
151

108
43
36

7

5

5

12

12

12

12

12

12

4
86

Exercise Set 3

1. A teacher gave a problem to her class. Shown below is the work done by
three of her students. Which solution is correct? Why?

tient?

Dick: We subtracted 5 sevens, and
10 sevens, and 4 sevens. Altogether
we subtracted 19 sevens. Our
quotient is 19, and our remainder

19 is 5.

In Example 10 the results were as follows: q = 19, r = 5.
The mathematical sentence for the relationship is 138 = (19 x 7) + 5.

Tom's solution Carol's solution Dave's solution

9)781 9 )781 9 ) 781
72 8 27 3 45 5

709 754 736
180 20 90 I0 45 5

529 664 691
270 30 450 50 108 12

259 214 583
225 25 90 10 108 12

34 124 475
27 3 45 5 108 12

7 86 79 367
72 8 108 12

7 86 259
108 12

151

108 12

43
36 4

7 86

9)781
72

709

180

529
270

259

225
34
27

7

140

86

Exercise Set 3

1. A teacher gave a problem to her class. Shown below is the work done by
three of her students. Which solution is correct? Why?

Tom's solution Carol's solution Dave's solution
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2. Using the method of repeated subtraction, determine the q and r that
will make the following sentences true, with r as small as possible:

a. 685 = (q x 13) + r.

b. 1,298 = (q x 48) + r.

c. 7,592 = (q x 73) + r.

d. 2,963 = (q x 85) + r.

A further step in developing an algorithm will be shown in Example 11:

EXAMPLE 11: The members of the senior class are making plans for
selling tickets to their play. Each person is responsible for selling
8 tickets. If they take 1,900 tickets to be packaged in bundles of 8, how
many bundles will they have, and how many tickets will be left over?

The mathematical sentence expressing the relationship in this

problem is 1,900 = (q x 8) + r and r < 8.

Let us use a form of estimation in which we work with multiples of
powers of ten (that is, multiples of 1, of 10, of 100, and so on).

8)1,900 1. Determine the interval:
1 x 8 = 8; 8 < 1,900.

10 x 8 = 80; 80 < 1,900.
100 x 8 = 800; 800 < 1,900.

1,000 x 8 = 8,000; but 8,000 > 1,900.
Therefore our quotient is between 100
and 1,000.

2. Determine the largest multiple of 100
that we can subtract.
100 x 8 = 800; 800 < 1,900.
200 x 8 = 1,600; 1,600 < 1,900.
300 x 8 = 2,400; but 2,400 > 1,900.

1,600 200 Therefore we subtract 200 x 8, or 1,600.

300 3. Determine the largest multiple of 10
that we can subtract.

10 x 8 = 80; 80 < 300.
20 x 8 = 160; 160 < 300.
30 x 8 = 240; 240 < 300.
40 x 8 = 320; but 320 > 300.

240 30 Therefore, we subtract 30 x 8, or 240.
60 4, By inspection, we should be able
56 7 to determine that we can subtract

r = 4 237 = q 7 x 8, of, 56.
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From these results, we may state that
1,900 . (237 x 8) + 4.

Interpretation of the results: 237 bundles of 8 tickets each, with 4 tickets
left over.

Exercise Set 4

Using the technique outlined in the above
that will make the following sentences true, with

1. 187 = (q x 12) + r.

2. 868 = (q x 25) + r.

3. 2,448 = (q x 39) + r.

4. 2,205 = (q x 21) + r.

problem, determine the q and r
r as small as possible.

One of the major difficulties in working with most division
algorithms is that of determining at each step the largest number that
can be used as a partial quotient. Before using another technique, let
us review a principle that you would want to develop with your students,

EXAMPLE 12:

(1) 24 + 6 = 0.
If we divide both 24 and 6 by 2, we obtain

(2) 12 + 3 = O.
How do the answers to (I) and (2) compare?

EXAMPLE 13:

(1) 84. 12 = 0.
Divide both 84 and 12 by 2.

(2) 42 + 6 = 0.
Divide both 84 and 12 by 4.

(3) 21 + 3 = O.
Divide both 84 and 12 by 6.

(4) 14 + 2 = O.
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Divide both 84 and 12 by 12.
(5) 7 4. 1 = O.

Divide both 84 and 12 by 3.
(6) 28 + 4 = O.

Compare the answers to (1), (2), (3), (4), (5), and (6). What do you
observe about these answers?

As a result of working with these and similar examples, your students
should be able to formulate the following generalization:

Dividing both the dividend and the divisor by the same num-
ber has no effect on the quotient.

As a next step in refining a division algorithm, consider the following
examples:

EXAMPLE 14:

6 )257 1. Determine the interval:
1 x 6 = 6; 6 < 257.

10 x 6 = 60; 60 < 257.
100 x 6 = 600; 600 > 257.

Therefore, our partial quotient is
between 10 and 100.

2. To make the estimation easier, we
round 257 to the nearest multiple of
10. We try

63.1676

3. By inspection, we determine that our
240 40 partial quotient is 40.

17 4. A student's knowledge of multiplica-
12 2 tion facts should enable him to see

r= 5 42 = q that the next partial quotient is 2.

EXAMPLE 15:

18 ig361 1. Determine the interval:
1 x 8 = 18; 18 < 856.

10 x 18 = 180; 180 < 856.
100 x 18 = 1,800; 1,800 > 856.

Therefore, our quotient is between 10
and 100.

2. For estimation purposes:
a) Round the divisor and the dividend

to the nearest multiple of 10. We try
20 PR.
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EXAMPLE 15- Continued

[856J

720
136

126

r= 10

b) In light of the discussion in

Examples 12 and 13, we see that
(by dividing dividend and divisor
by 10) we can rewrite the above as

2 76.

40
c) By inspection, we determine that

our partial quotient is about 40.
3. For further estimation:

a) Round the divisor and dividend
to the nearest multiple of 10. Try

20 TIW.

b) This quotient is equivalent to
2 TITI.

7 c) By inspection, we determine that
47 = q our partial quotient is 7.

EXAMPLE 16:

12)236 1. Determine the interval:
1 x 12 = 12; 12 < 236.

10 x 12 = 120; 120 < 236.
100 x 12 = 1,200; 1,200 > 236.

2. Think of the problem as
10 240,

120

116
108

r = 8

10

9

19 = q

then as
1)TI.

It would appear that the partial
quotient is 20, but
20 x 12 = 240 and 240 > 236.

So we must use 10.
3. By inspection, we determine that the

partial quotient is 9.

NOTE: We see by this example that our estimation techniques are not
always effective this is why division is difficult. Although these
techniques for determining partial quotients are not "perfect," they are
satisfactory for the majority of problems. if the technique fails at any
stage, we have a way of estimating a new partial quotient.

Observe, however, that if we round up the divisor and round down
the dividend, the estimated quotient will never be too large.
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We hope that students eventually will be able to solve problems of
this type with a minimum of writing. The following example indicates
how this might be done.

EXAMPLE 17:

18)4,262 1. To determine a partial quotient,
round the numbers and think of the
example as

20 4-,-300

3,600
662

540
122

108

r= 14

or as
20 )43 hundreds.

200 Our estimate would be 2 hundreds,
or 200.

2. Round the numbers and think of the
example as

20 ya
or as

20 76Thrs.
30 Our estimate would be 3 tens, or 30.

3. Round the numbers and think of the
example as

20 726
or as

2 jff.
6 Our partial quotient is 6.

236 = q

Let's look at another example.

EXAMPLE 18:

24) 6,080

4,800
1,280

1. To determine a partial quotient, think
of the example as

20 6,100
or as

20)61 hundreds.
Estimation: 3 hundreds.
But

300 x 24 = 7,200
and

7,200 > 6,080.
200 Therefore, our partial quotient is 200,

or 2 hundreds.
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EXAMPLE 18- Continued

(1,280J

1 200
80

72
r = 8

2. Think of the example as
20.300

or as
20 130 tens.

Estimation: 6 tens, or 60.
But

60 x 24 = 1,440
and

1,440 > 1,280.
Therefore, our partial quotient is

50 5 tens, or 50.
3. By inspection, we can see that our

partial quotient is 3.
3

253 = q

In the next example, let us write our quotient in a different position;
this form is more like that of the conventional algorithm.

EXAMPLE 19:

207 (--q
7

200
48 PT74

9,600
374
336

38

Think:
1. 50)100 hundreds Partial quotient:

2 hundreds.

2. 507-7Tj-ls Partial quotient: 0 tens.

3. 5070- Partial quotient: 7.
or 5 737

Answer: q = 207, r = 38.

Example 18, written in the above form, would look like this:

Answer: q = 253, r = 8.

253< q
3

50
200

24)7:a6
4,800
1,280
1,200

80
72

8<
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Exercise Set 5

Using one of the methods outlined above, compute:

1. 97168 3. 527167000

2. 2714,;0. 4. 76 30,421

In the case of students who have difficulty with division, it

would probably be best to let them continue to use one of the forms
illustrated in Examples 11, 15, and 17the choice depending on
the level at which they can work most effectively.

But with other students you would want to use the conventional
algorithm. Let us look at an example in which the conventional form is
used.

EXAMPLE 20:

42 T6,893

1

42 )1,gi
4,200

2,693

16

423T,8;05
4,200
2,693
2,520

173

164

42WiW3.-
4,200
2,693
2,520

173

168

5

Think:

1. 40)69 hundreds Partial quotient:
1 hundred.

Instead of writing the partial quotient
as "100," we write only "1" in the
position immediately above the hun-
dreds position in the dividend.

2. 40 270 tens Partial quotient: 6 tens.
Instead of writing the partial quotient
as "60," we write only "6" in the posi-
tion above the tens position in the
dividend.

3. 40 riTo Partial quotient: 4.
We write "4" in the position im-
mediately above the ones position
in the dividend.

Answer: q = 164, r = 5.
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SUMMARY

In this chapter we have discussed several approaches to the solution
of two basic types of problems--problems that are division situations
and problems that are an extension of the division idea. The approach
best suited to a student depends, of course, upon his aptitude for
mathematics, general ability, and mathematical background. A child
begins at the physical level, working with sets of objects and partition- .ing them into equivalent subsets. He then progresses to an algorithm
based upon the activity he carried out at the physical levelinstead of
"subtracting off" equivalent subsets of objects, he now repeatedly sub-
tracts the divisor. It is important that the student understand this
algorithm, since most other algorithms are modifications of this one.

These modifications consist basically of subtracting a few multiples
of the divisor instead of subtracting the divisor itself a large number of
times. Later we introduce further modifications aimed at developing ef-
ficient techniques for determining the largest multiples of the
divisor that can be subtracted, so that the least number of subtractions
will be needed. The goal for most students is the conventional algorithm,
for which there is a minimum of writing. However, other algorithms
lead fairly quickly to the correct answer and are basically satisfactory.

While working with division situations, we found instances that were
similar to division but for which we could not use the "missing factor"
concept. For instant e, in Example 1, we were able to express the rela-
tionship as

12 = 4 x3.
(This corresponds to the case where the remainder is zero.) But when we
changed the data so that the teacher had 13 chocolates, there was no
whole number that could make the following relationship true:

13 = 0 x 3.

Because of situations of this type, it was necessary to extend the idea
of division and to develop the following generalization:

For any pair of whole numbers a and b, where b 0 0, it is
always possible to determine a pair of whole numbers q
(quotient) and r (remainder) such that

a = (q x b) + r, and r < b.

a: dividend b: divisor
q: quotient r; remainder
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With this generalization, we can then describe the situation involving
the 13 chocolates as

13 = (4 x 3) + 1 where 4 = q and 1 = r.
This generalization can be used not only for situations that are an

extension of the idea of division but also for division itself, which cor-
responds to the case where the remainder is zero. The remainder will
be zero if and only if the divisor and the quotient are factors of the
dividend.
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THE WHOLE-NUMBER S
KEY IDEAS

1. What are some of the key ideas of the whole-number
system that permeate much of mathematics?

2. How are sets used in developing the whole-number
system?

3. Why is renaming an important notion in elementary
mathematics?

4. What are the differences in meaning between the
terms "operation," "computation," and "algorithm"?

5. Why is it desirable to start the notion of proof
in elementary mathematics?

As elementary school teachers, many of us probably feel that
the main contribution elementary mathematics makes to the education
of our children is to enable them to solve the problems of a numerical
or logical nature that they are most likely to meet in everyday
life. Another important aim of elementary mathematics should be to
provide children with a good basic foundation for later mathematics
courses, which many will need in preparing for their careers. In order
to accomplish these objectives in a minimum amount of time, we seek
ideas that simplify, clarify, and unify our thinking. These ideas, which
we are calling KEY IDEAS, will be our main concern here.

The key ideas we have considered in developing the whole-number
system permeate many areas of mathematics, so that when we devote
class time to these ideas, we prepare children to meet not only
their immediate mathematical needs but also the mathematical needs
of their future.

One of the key ideas permeating much of mathematics is the concept
of a set.
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SET

In our approach to the whole-number system, we used sets in many
w ays.

1. Through equivalent sets we conveyed the notion of a whole number.

0 E-3]

1
2. Through the union of disjoint sets we defined the sum of a pair of

whole numbers.

n(A). 2. n(B) = 3.
Hence 2 i- 3 = n(A) + n(B)

= n(A U B)
= 5.

n(A) + (B) = n(A U B).

3. Through the cross procu.~1 03 a pair of sets we showed how
the product of a pair of whole numbers can be defined.

B n(A) = 2. n(B) = 3.
a b c Hence 2 x 3= n(A) x n(B)

r = n(A X B)
A

1 ts = n({(r, a), (r, b), (r, c),
(s, a), (s, b), (s, c)c)})

= 6.

n(A) x n(B) = n(A X B)

4. Through a partitioning of sets we showed how the concepts of
difference and quotient may be developed.

A B

A
2

o o G
5 2

12 ÷ 3 = 4
or

12 -:. 4 = 3.

In some of the rower programs children are taught to translate
problems into matnematical sentences. They also learn to solve
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mathematical sentences and are introduced to the important notion of a
solution set. Here are some typical mathematical sentences and the
solution st:t for each.

Find the set of whole numbers satisfying these conditions:

Sentence
2 x 0 . 8.
2 x 0 <8.
2 x 0 . 9.

is even and less than 8.

Solution Set
{4}

(0, 1,2,3}
{

}

{ 0, 2, 4, 6 }

Exercise Set 1

1. Which pairs of these sets ere equivalent?

A = la I. C = !John, Mary). E = 17 }.

B = ( 21. D= 10, 1, 21. F . la, b, cl.
G = 11, blue ).

11 = ( 1.

2. What requirement determines whether two sets are equivalent?

3. What number would you associate with each of the sets mentioned
in Exercise 1? (For example: n(A) = 1.1

4. When are two sets assigned Olt, same number?

5. Which pairs of the sets mentioned in Exercise 1 are not disjoint?

6. When are two sets disjoint?

7. With the use of sets, how can one compute the sum 2 + 3?

8. If a and b are whole numbers, define a + b in terms of sets.

9. Express the following cross products of sets mentioned in Exercise 1 by
listing the members within braces. For example: B X C = {(2, John), (2, Mary)).

a. A X B

b. A X C

c. C X D

d. D X C
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f. DXF
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g. DXG

h. DXH

10. Find the number of elements (ordered pairs are the elements here) in each
cross product mentioned in Exercise 9. What related mathematical sentence is
suggested by each cross product?

11. If a and b are whole numbers, explain how a x b can be defined in terms
of the cross product of two sets.

12.

a. What addition sentence is suggested by the above figure?

b. What subtraction sentences are suggested by the above figure?

13. If the whole number a is not less than the whole number b, define a b
in terms of a partitioning of a set.

14. Show how 12 + 3 may be illustrated by two different ways of partition-
ing a set of 12 elements.

15. End a set of whole numbers satisfying each of these conditions:

a. 3 + 1-1. . 7. d. 3 x 0 = 6. g. 3 x < 7.

b. LI - 3 = 7. e. 3 + 0 < 7. h. 0 -:- 3 < 7.

c. 3 x0= 7. f. E..] - 3 < 7. i. is even and

0 + 3 < 7.

PROPERTIES OF OPERATIONS

In order that our pupils learn to compute efficiently, we teach them
algorithms. But we want children to understand the reasoning behind
each step of an algorithm, so we devote time to the properties of our
four fundamental arithmetic operations. With a meaningful interpreta-
tion of the operations and their properties, children are in a position to
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figure out many of the algorithms or to compute without the need of
knowing any prescribed algorithm. Of prime importance here is the role
played by our decimal numeration system, which is used internationally

and in all mathematics.
The main operation properties treated in these units may be

summarized as follows:

Addition and multiplication are each commutative.
a+b=b+a; axb=bxa.

Addition and multiplication are each associative.
(a + b) + c = a + (b +c); (a x b) xc =ax (b x c).

Multiplication distributes with respect to addition:

a x (b + c) = (a x b) + (a x c).

For addition the identity element is 0, while for multiplication the
identity element is 1.

0+ a = a and a+ 0 = a.

lx a=a and a x 1 = a.

The roles of 0 and 1 in subtraction and division may be summarized

as follows: For every whole numbera
a 0 = a.

a a = 0.

0 + a = 0 (for a ;6 0).

a + a = 1 (for a 0).

a + I = a.

RENAMING

The properties mentioned above may be viewed as "renaming"
properties. For example, the number named by "283 + 794" is the same

as the number named by "794 + 283," and we need not compute the

sum to know this.
283 + 794 = 794 + 283.

The equality follows from the commutative property of addition.

Renaming is a basic idea in mathematics. We are continually renam-

ing numbers in arithmetic computation. In fact, computation is a re-
naming process, since it requires that we find a standard name for a
number.

REASONING AND PROOF

Although we have not exactly spelled out a formal development of
the whole-number system, we have approximated what is referred to as
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a "postulational" approach. Although we have reasoned from
(1) undefined terms for example, "set"
(2) defined terms- for example, "a + b"
(3) assumptions-- for example, that (a x b) x c = a x (b x r),

we have not given actual formal proofs of our properties. We have,
hopefully, made them reasonable. Although the operation properties in
our development have been, for the most part, assumptions, proofs for
these properties can be found in more advanced treatments.

Nevertheless, the notion of proof is a key idea in mathematics.
Although in the early grades we do not deal with proof in a formal way,
a beginning is made when we ask, "How do you know that 2 + 3 = 5?"
and the child holds up 2 fingers and 3 more fingers and then counts to
5. A further development takes place when children justify mathemati-
cal statements by citing properties of the operations rather than by re-
sorting to computation. Thus suppose we have to compute

(I) 25
x 476

Because multiplication is commutative, we know that
25 x 476 = 476 x 25.

Consequently, the computation in (1) may be replaced by
(2) 476

x 25
which is somewhat shorter.

Another stage in developing the notion of proof is illustrated by the
following argument involving even and odd numbers. We begin with
certain definitions and properties.

THE DEFINITIONS:

An even number is the double of some whole number. It may be
represented by 2a where a stands for some whole number. These
are even numbers: 2 x 0, 2 x 1, 2 x 2, 2 x 3, 2 x 4, ... .

An odd number is I more than some even number. It may be
represented by 2a + 1 where a stands for some whole number.
These are odd numbers: (2 x 0) + 1, (2 x 1) + 1, (2 x 2) + 1,
(2 x 3) + 1, ....

THE PROPERTIES:

The sum of a whole number and a whole number is a
whole number. (This follows from our definition of sum.)

Multiplication is distributive over addition. (We call this
property "distributivity" for short.)
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Using these definitions and properties, we can proceed in the following
manner to give a formal proof that the sum of two even numbers is an
even number.

Represent the first even number by 2a and the second even number
by 2b, where a and b are whole numbers, not necessarily different. Then

2a + 2b = 2(a + b) by the distributive property;

a + b is a whole number

Hence 2(a + b) is even

because the sum of whole num-
bers is a whole number.

by our definition of an even
number, for it is twice a whole
number.

This argument proves that the sum of an even number and an even
number is an even number. (We may abbreviate this generalization by
writing "E + E . E.") In a similar manner we can prove that-

(1) The sum of an odd number and an odd number is an
even number. (We may abbreviate this generalization by
writing "0 + 0 = E.")

(2) The sum of an e.,....1.w;-number and an odd number is an
odd number. (We may abbreviate this generalization by
writing "E + 0 = 0" or "0 + E = O.")

On the basis of these generalizations about even and odd numbers, one
might challenge brighter pupils to prove that there are no three odd
numbers totaling 30. (The three odd numbers need not be different.)
The proof is based on the generalizations that

0 + 0 = E and E + 0 = 0
and on the fact that 30 is an even number, b.:cause 30 = 2 x 15. Given
three odd numbers (not necessarily different), the sum of the first two
odd numbers is an even number. The sum of this even number and the
third odd number is an odd number. But 30 is an even number. So we
conclude that there cannot be three odd numbers that have a sum of 30.
The reasoning may be shown schematically as follows:

0 + 0 + 0 = 30
.....--1

EY0

These generalizations about odd and even numbers can serve as an
additional check on computation. Thus, one can say that the following
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computed sum is incorrect because E + E . E- that is, the sum of a
pair of even numbers is an even number whereas 65 is odd.

26
+ 38

65 Incorrect

Exercise Set 2

NOTE.Exercises below marked "*" take us into the realm of algebra.
They are not being suggested for use in elementary school except possibly for
special work with advanced groups. They are offered as exercises in deductive
reasoning for teachers who wish to explore, in greater depth, proofs for
s.vs in algorithms.

1. What properties or definitions arc used in the following?
a. 39 + 76 . 76 + 39.

b. (39 + 76) + 24 = 39 + (76 + 24).

c. 35 Hint: 35 + 2 = (30 + 5) + 2
+ 2 = 30 + (5 + 2)

37

1 2 15
d. 35 e. 35 f. $$

+ 9 2 9
44 33 2 6

g. 35 9 = 36 10.

h. 32

x 3

96

j. 37 x 25 = 25 x 37.

k. (37 x 25) x 4 = 37 x (25 x 4).

i. 34
x 3
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I. (37 x 25)x 0 = 0.

m. (37 x 73) + (23 x 73) (37 + 23) x 73.

n. 12 + 3 4.

o. 12 + 1 = 12.

p. "12 + 0" and "0 + 0" are meaningless expressions.

2. Find the appropriate number for each frame:

a. 678 = (0 x 100) + (A x 10) + (V x
b. 1.3 ;1- 38 = 78 L.

(Remember to use the same number for each frame of the same shape.)

3. Justify: If a and b are any whole numbers, then
(a + b) b = a.

For example: (4 + 3) 3 = 4.

* !f a and b are any whole numbers with a not less than b, then
(a b) + b = a.

For example: (4 3) + 3 = 4.

* 5. Justify: For any whole numbers a, b, and c with b not less than c,
(a + b) c = a + (b c).

For example: (4 + 3) 2 = 4 + (3 2).

* 6. Justify: For any whole num bers a, b, c with a not less than b + c,
(a b) c = a (b + c).

For example: (7 3) I = 7 (3 + I ).
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* 7. Justify: For any whole numbers a, b, c with a not less than b,

(a b) = (a + c) (b + c).

For example: 15 7 = (15 + 3) (7 + 3).

* 8. Justify: For any whole numbers a, b, c with a not less than b and b not

less than c,
(a c) (b c) = a b.

For example: (15 5) (7 5) = 15 7.

* 9. Justify: For any whole numbers a, b, c, d with a not less than c, and b

not less than d,
(a + b) (c + d) = (a c) + (b d).

For example: (20 + 7) (10 + 3) = (20 10) + (7 3).

*10. Justify: For any whole numbers a, c, d with c not less than d, and a
not less than c,

a (c d) = (a c) + d.

For example: 17 (7 3) = (17 7) + 3.

*11. Justify: For any whole numbers a, b, and c with a not less than b,

(a b) + c = (a + c) b.

For example: (17 2) + 3 = (17 + 3) 2.

* 12. Justify: For any whole numbers a, b, and c with b not less than c,

a + b = (a + c) + (b c).

For example: 7 + 12 = (7 + 2) + (12 2).

Corresponding to each of the generalizations in Exercises 3 through 12 there

is a generalization involving multiplication and division, multiplication
corresponding to addition and division corresponding to subtraction. Thus,

corresponding to
(a + b) b =a

we have
(a x b) ÷ b = a.

Moreover, the proofs are essentially analogous.
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* 13. Justify: For any whole numbers a and b, with b * 0,
(1) (axb)÷ b = a.
(2) (a + b) x b = a, provided a + b is a whole number.

*14. State generalizations involving multiplication and division correspond-
ing to those in Exercises 4 through I I and try to justify each.

*15. In the definition of a + b, show that it does not matter which sets A
and B are used just vs long as n(A) = a, n(B) = b, and A and B are disjoint.
(In our definition we assumed that it did not matter. Here, we are seeking to
show that this assumption can be established.)

16. Find a short way to compute the following:
a. (36 x 47) + (47 x 64)

b. 25 x (36 x 4)

c. 575 298

d. 575 + 298

e. 575 4. 25

*17. Justify: If a < b, then

(!) a + c < b + c

(2) a c < b c provided a is not less than c;

(3) c a >cb provided c is not less than b;

(4) a x c < b x c provided c# 0.
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* it Justify: If a < b and c < d, then
(1) a + c < b +d;
(2) axc<bxd.

* 19. Justify: If a < b and b < c, then a < c.

*20. Justify:

a. The sum of two odd numbers is an even number.

b. The sum of an even number and an odd number is an odd number.

c. The product of two whole numbers is an even number whenever one of
the factors is even.

d. The product of two odd numbers is an odd number.

21. Prove as you would expect a primary-grade child to prove:

a. 6 + 2 = 8.

b. 6 2 = 4.

c. 6 x 2 = 12.

d. 6 + 2 = 3.

CORRESPONDENCE

We turn next to another key idea that permeates much of mathematics,
the notion of correspondence. In studying the whole-number system we
touched on this idea when we considered one-to-one correspondence and
the notion of an operation. Later on in mathematics, this idea is again
introduced under the notion of a function.

Returning to the operations we have studied, let us note that each of
the four basic operations of arithmetic associates a single number with
a given pair of numbers.
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NUMBER PAIR SUM

12 + 3,
or 15

a + b

DIFFERENCE

12 3, or 9

a b

provided a
is not less
than b

x
PRODUCT

12 x 3,
or 36

a xb

QUOTIENT

12 4- 3, or 4

a ÷ b

provided there :s a
whole number c such
that a = bxc and
b # 0.

Because a pair of numbers must be specified first, the operations we
have studied are often called binary operations. Addition, subtraction,
multiplication, and division are not the only binary operations. In fact,
one can show that there are an endless number of binary operations.
Let's consider one other binary operation that most of us are familiar
with, averaging a pair of numbers. For example, the average of 5 and 9
is

(5 + 9) ÷ 2 = 14 ÷ 2 = 7.
Suppose we let "v" denote the operation of averaging two numbers. We
could then write

5 v 9 = 7

or we could write
-I- b

a v b =
a

2

when defined; that is, when a and b are either both even or both odd.
(When rational numbers are studied, there is no such limitation.)

We could now ask, What properties does the operation of averaging
enjoy? Is it commutative? Clearly, when a v b is defined, then so is
bv a; and avb=bv a. This follows from the fact that a + h = b + a,
since addition is commutative.

a+b b+a
a v o = = = b v a.

2 2

Is averaging associative? Let's try some numbers.

while

(4 v 8)v 12 = 6 v 12 = 9

4 v(8 v 12). 4 v = 7.

But 9 # 7. Hence,

(4 v 8) v 12 * 4 v (8 v 12).

This one exception is enough to prove that averaging is not associative.
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In addition to binary operations, each of which associates some num-
ber with a given pair of numbers, there are also unary operations, which
associate some number with a given single number. For example,
doubling associates with every single number its double.

With 0, doubling associates 2 x 0, or 0.
1, 2x 1,or2.
2, II II 2x2,or4.

II
a. 2x a, or 2a.

Number
0
1

2

a

Double
0
2

4
2a

Other unary operations are tripling, squaring, increasing by 7, and so
on. In their later study of mathematics, children will meet the trigono-
metric functions and logarithmic functions, which are unary operations.
In some of the newer programs a basis for such later developments is
provided by introducing unary operations such as doubling, squaring,
increasing by one, and so on.

Exercise Set 3
1. Fill in the table, wherever possible, with standard names for whole

numbers.

NUMBER PAIR
+

SUM
-

DIFFERENCE
x

PRODUCT
+

QUOTIENT
V

AVERAGE

(12.4)

(44.4)

(4, 4) .

(4, 12)

(2, 0)

(0, 2)

(0, 0)
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2. In the manner shown in the first row, fill in the table, wherever possible,
with names for whole numbers.

NUMBER DOUBLE TRIPLE SQUARE SUCCESSOR PREDECESSOR

6 2 x 6
or 12

3 x 6
or 18

6 x 6
or 36

6+ 1
or 7

6- 1 or 5

2

7 1

1

0

I0

ORDER

Another idea that is playing an increasingly important role in
mathematics is order. In our study of the whole numbers we touched on
this notion when we worked with inequalities. In classical areas such as
calculus, for example, and in more modern areas, such as linear pro-
gramming, inequalities are indispensable.

Exercise Set 4

1. Using the addition operation, how can you show children that 5 is less
than 7?

2. Using the addition operation, define what we mean when we say that a
is less than b.

3. What restriction is needed for "a b" to be meaningful in the study of
whole numbers?

4. If a < b, show that a + 1 < b + 1.

5. Describe how a child can compare the number of pencils in a bag with
the number of crayons in a box without counting.
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6. If a and b are whole numbers, what are the three possibilities for express-
ing their relationship in terms of size?

SUMMARY

In our study of the whole-number system we have encountered some
of the key ideas of mathematics:

1. The basic role set plays in mathematics

2. The importance of renamingin computation

3. The kind of reasoning we do in mathematics from undefined term,
defined term, and assumption

4. The transition from conjecturing and plausible reasoning to the
seeking of proof which will validate or invalidate these conjectures

5. Correspondence through the notions of one-to-one correspondence
and operation. (An operation establishes a correspondence
between two sets.)

6. Order in counting and in dealing with inequalities

With a firm grasp of these ideas, children will be better prepared both
to figure out their own solutions to problems in elementary mathematics
and to expand their knowledge of mathematics in the challenging years
that lie ahead.
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ANSWERS TO EXERCISES

BEGINNING NUMBER CONCEPTS

Exercise Set 1, pp.4-5

1. Place a finger on each dot. This sets up a pairing of fingers and dots. If
each finger is paired with a particular dot so that each dot is paired
,Aith a particular finger, the sets are matched. If the two sets match, they are
equivaknt and have the same number of members.

2. Various correct answers are possible. Each person's name can be put on
a separate piece of paper. Each paper is placed on a chair, one paper to a chair.
If every per with a name on it can be placed on a chair, then there are enough
chairs.

3. There may be more chairs than members of the staff; there may be as
many chairs as members of the staff; there may be fewer chairs than members
of the staff.

4. A = {Mon., Tues., Wed., Thurs., Fri., Sat., Sun.).

5. Here is one of many correct answers:

A = {Mon., Tues., Wed., Thurs., Fri., Sat., Sun.).

B = la, b, c, d, e, J, gl.

6. When the elements of one set have been paired with the elements of the
other set so that the two sets match.

7. Sets A and E; sets B and D.

8. pencil pen book pencil pen book pencil pen book

t t I Xi
a b c a b c a
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pencil pen book

ir>1 I
a b c a

pencil pen book pencil pen book

Exercise Set 2, pp. 7-8

1. If a one-to-one correspondence can be set up between two sets, they can
belong to the same family.

2. They are equivalent: they have the same number of elements.
3. Seven.

4. Various correct answers are possible. One such set is the set of days of
the week.

5. Various correct answers are possible.
E = (John, Henry, Bill, Mary, Jane, Jim, Susan).

6. Sets D and E can belong to the same family cf equivalent sets and there-
fore have the same number of dements.

7. Seven.

Exercise Set 3, pp. 10-11
1. All sets except E. A set S is a subset of set T if every member of set S

is also a member of set T.

2. Sets A, B, C, D. To be a proper subset of 6, every member of the subset
must also be a member of set G, but there must be at least one member of G
that is not a member of the subset. It is for this reason that set F is not a proper
subset of set G.

3. Various correct answers are possible. For example, a proper subset of
B is (black, pencil}.

lblack, pencil)

1 $
(Mary, John)

4. The number of set B is greater than the number of set A, or the number
of set A is less than the number of set B.

5. 2 is less than 3.

6. The number of set A is less than the number of set B.

7. Various correct answers are possible. Since E = (chair).
that) is a proper subset of set F and it can F = (hat, coat).
be matched with set E, 1 < 2.

8. Various correct answers are possible:
R = (tree, cloud, hill).
S = (John, pen, chain, house, window).

There is a proper subset of set S which can be matched with set R. Therefore
n(R) < n(S).
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Exercise Set 4, pp. 14-15
3 4 5 1

Answers to Exercises

4 5

girl eraser dog girl eraser dog

girl raw dog girl eraser

2. In every case, the number 3 was the last number.
3. Counting consists of matching a given set with a certain ordered subset

of the natural numbers to arrive at the number of the given set.
4. I

5. 0

6. Various correct answers are possible. One example is the set of people 22
feet tall. Such a set is called an empty set.

DEVELOPMENT OF OUR DECIMAL NUMERATION SYSTEM

1. a. 4

b. I I

c. 33

Exercise Set 1, pp. 19-20
d. 101

e. 200
f. 222

g. 244
h. 708
i. 555

2. IrPnnnn mu
3. a. x.

b. (
c. Invent a new symbol. This symbol would represent 100,000.
d. Invent a new symbol.
a. 7
f. invent a new symbol to represent one billion. (We are assuming they

had already invented symbols for I, 10, 100, 1,000, 10,000, etc.)

4. a. 2

b. 7

c. 27

d. 66
a. 278
f. 512

g. 1,012

h. 2,211
i. 383

5. The value of the numeral is the sum of the values of each symbol making
up the numeral.

6. 23

7. 45

8. The value of the numeral is the sum of the values of each symbol making
up the numeral.

1. a. 12

2. a. 2

Exercise Set 2, pp. 21-22
b. 62 c. 610 d. 1,203 a. 1,281
b. 12 c. 144 d. 60
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1. 7 fours + 0 ones
2. 5 fives + 3 ones

3. 2 tens + 8 ones

Exercise Set 3, pp. 23-24
4. 33
5. 42

Exercise Set 4, pp. 26-27
1. a. 36 c. 8,645 e. 36 g. 8,764

f073 f. 563 h. 5,0684d. ,b. 567 d

2. The digit 3 represents 3 x 100.
The digit 4 represents 4 x 10.
The digit 7 represents 7 x 1.

3. The digit 4 represents 4 x I, .i.I.J.
The digit 9 represents 9 x 100.
The digit I represents I x 10.
The digit 6 represents 6 x I.

4. The digit 3 (at left) represents 3 x 1,000.
The digit 0 represents 0 x 100.
The digit 3 represents 3 x 10.
The digit 3 (at right) represents 3 x 1.

Exercise Set 5, pp. 27-28

1. a. The digit 5 represents 5 x 10,000.
The digit 6 represents 6 x 1,000.
The digit 3 represents 3 x 100.
The digit 4 represents 4 x 10.
The digit 2 represents 2 x I.

b. The digit 2 represents 2 x 10,000,
The digit 0 represents 0 x 1,000.
The digit 5 represents 5 x 100.
The digit 1 represents 1 x 10.
The digit 8 represents 8 x 1.

2. Multiply ten x ten x ten x ten by ten.

3. a. eight x eight; eight x eight x eight;
eight x eight x eight x eight.

b. seven x seven; seven x seven x seven;
seven x seven x seven x seven.

c. five x five; five x five x five;
five x five x five x five.

d. six x six; six x six x six; six x six x six x six.

1.

Exercise Set 6, pp. 31-32

PLACE-VALUE CHART
ten x ten ten x ten ten x ten base ones
x ten x ten x ten ten

10' 10' 102 10' 10'
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2. a. 100 + 40 + 6
I x 100 + 4 x 10 + 6 x 1
1 x(I0 x 10) + 4x10 + 6x1
1 x 10' + 4 x 10' + 6 x 10"

b. 300 + 20 + 9
3 x 100 + 2x10 + 9x1
3x(I0 x10) + 2x10 + 9 xl
3x 10' + 2x 10' + 9x 10"

c. 7,000 + 100 + 40 + 6
7 x 1,000 + 1x100 + 4 x 10 + 6
7 x(10 x 10 x 10) + 1 x(10 x 10) + 4 x 10 + 6 x 1
7 x 10' + 1 x 10' + 4 x 10' + 6 x 10"

d. 30,000 + 3,000 + 400 + 10 + 2
3x10,000 + 3x1,000 + 4 x 100 + 1x10 + 2x1
3 x ( 1 0 x 10 x 10 x 10) + 3 x(I0 x 10 x 10) + 4 x(I0 x 10)

+ 1 x 10 + 2 x I
3 x 104 + 3 x 10' + 4x102 + 1 x 10' + 2 x 10"

e. 200,000 + 90,000 + 6,000 + 300 + 10 + 4
2 x 100,000 + 9 x 10,000 + 6 x 1,000 + 3 x 100 +

1 x 10 + 4 x 1
2 x(10 x10 x10 x 10x 10) + 9 x(I0 x 10 x10 x10)

6 x ( 1 0 x 10 x 10) + 3 x ( 1 0 x 10) + 1 x 10 +
2 x 10' + 9 x 104 + 6 x 10' + 3 x 10= +

+ 4 x 10"

+
4 x 1

1 x 10'

3. a. 436 f. 4,676 j. 8,567
b. 6,547 g. 50,060 k. 963,256
c. 7,658 h. 4,361 i. 7,369,600
d. 5,069 i. 747 m. 8,003,056
e. 65,436

4. a. 10 d. 100 or 10' g. 3,3
b. 9 e. 10 h. 4,4
c. 1 f. 10' i. 10, 10, 10, 10 ,10

5. 36 = 30 + 6
27 = 20 + 7

50 + 13 = 50 + 10 + 3
= 60 + 3
= 63

ADDITION AND ITS PROPERTIES

Exercise Set 1, p. 36

1. A U B = la, b, c, e, i, o, 4
2. BU A = (a, b, c, e, 1, a, 4
3. A U C = la,b,c,f, g).
4. BU C = la;b, e,f, g, i, o, 4
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6. AU D= fa, b, c, u, v, w, x, y, zl.
6. (Au B) U C = (a , b , c; e, f, g, o, u).

7. A U (B U C) = (a, b, c, e, f, g, o, u).

8. BU( = (a, e, o, ul = B.

Exercise Set 2, pp. 38-39
1. We choose a set A with 7 elements and a set B (disjoint from A) with 2

elements. Then 7 + 2 is the number of elements in A U B.
2. The expressions in b, c, e, f, and i are meaningless. The term "union"

and the symbol "U" apply to sets, whereas "sum" and "+" are used
with numbers.

3. A and B must have exactly two elements in common.
4. No. If A and B are disjoint, n(A) + n(B) = n(A U B). If A and B are not

disjoint, n(A) + n(B) > n(A U B).

5. a. 2 4

b.

c.

d.

r-Tr--1---TM I

°

4 + 2

I I I I I I I
0 1 2 3 4 5

6

I I I
8 9 10

I
7

I

9

5 + 1

I I )
9

4 I I I
13

I I I

6 7 80 I 2

6

3 + 3

6

Exercise Set 3, pp. 43-44

1. a. Addition is commutative.
b. Addition is associative.
c. Addition is commutative: 4 and 7 have been interchanged.
d. Addition is commutative: 2 + 9 and 3 + 1 have been interchanged.
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Addition is associative.
f. Addition is commutative.

2. a. 7 4-(3 + 6).(7 + 3)+ 6 = I0 +6.
b. 8 +(5 + 2). 8 +(2 + 5).(8+ 2)+ 5 = 10 + 5.
c. (4 +9)+ 1 = 4+(9+1). 4+10.
d. 17 +(28 + 3). 17 +(3 + 28)=(17 + 3)+ 28 = 20+ 28.
S. (16+7)+(3+4)=(I6+4)+(7+3)=20+ 10.

3. a. Yes, a * b = b ir a for all numbers a and b because 2 times the sum of
a and b is the same as 2 times the sum of b and a.

b. 2*(3*4) = 2*14 = 32.
c. No, because (2 * 3) * 4 # 2 * (3 * 4).

Exercise Set 4, p. 45

1. Consider the addition facts displayed in the form of a table. The first row of
the body of the table and the first column are taken care of by the addition prop-
erty of O. The commutative property makes it unnecessary to memorize the others
crossed out below. There are 45 facts left.

+ 0 1 2 3 4 5 6 7 8 9

0

2

3

. 4

5

6

7

8

9

vdowoorafans
wA wnw--.mo2vA

APlIFFIMPOW
NIIIIVIMONNEromivire,morvAvi...Am
r1113.1W

A A i

AM'

A A

For"
6 7 8 9 10 Fr

041
.Arz;A

16 r7/./
18

7 8 9 10 11

8 9 10 1 1 12

10 11 12 13 14 15

4 10 11 12 13 14 15 16 17

2. a < b means that there is a whole number c, other than 0, such that a + c = b.
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MULTIPLICATION AND ITS PROPERTIES

Exercise Set 1, p. 49

1. (a, e) (b, e) (c, e) (d,e)
(a,f) (b,f) (c,f) (d,f)
(a, g) (b,g) (c, g) (d, g)

2: la, bi x {r, s, 1, ul = ((a, r), (a, s), (a, 1), (a, u), (b, r), (b, s), (b, I), (b, u)).

3. A :( B = 1(x, r), (x, s), (x. :), (y, r), (y, s), (y, 0).
B x A = 1(r, x), (r, y), (s, x), (s, y), (t, x), (t, y))
A x B is not the same set as B x A. However, A x B is equivalent to B xA.

4. n(A) = 2. n(B) = 3. n(A x B) = 6. n(B xA) = 6.

Exercise Set 2, pp. 51-52

1. 6: (red, brown) (red, black) (red, white)
(white, brown) (white, black) (white, white)

2. 2 x 2 = 4.

3. 4x 5,or 20

1. a. 4x3 = 12.

Exercise Set 3, pp. 54-55

b. 2x3 = 6. c. 6 x 2 = 12.

2. Various answers are possible. For example:
A = (a, b, c, dl, 4 elements.
B = (q, p, r, s }, 4 elements.

Their union is (a, b, c, d, q, p, r, s }, 8 elements.

3. a. 6 x 3 = 18.
b. 4 xl = 4.

c. 3 x0 = O.
d. 6 x6 = 36.

e. 2x2 = 4.

4. We should find the product of the two numbers 3 and 24, because
a solution of this problem rests upon the use of our second approach
to multiplication. Each quart of milk costs 24 cents, so the total cost
for 3 quarts is (24 + 24 + 24) cents, which, according to our second in-
terpretation, is (3 x 24) cents. (Computation yields 72 cents as the total cost.)

1. a. 3 x5 = 15.

2. a.
O 0

O 0

O 0

Exercise Set 4, p. 57

b. 5 x 3 = 15. c. 5 x 5 = 25.

b. x c.

x 1

x

x

x

x
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3- a. 4 4 4
/--------- /---

<I 1 i I 1 I I Ijil I I 11 1

0 4 8 12

12

b. 3 3 3 3

c.

d.

4 rl I irM1--MILT1 I
0 3 6 9 12

12

1 I 1 I 1.00.11

0
'''-------,,_________........V5

5

5

< I I

o,_...

5

Exercise Set 5, p. 62

)

)

1. a. Elx8.8x9. d. M x A . 17 x13.

b. 4 xA.17 x 4. . a x6)x7 = (6x9)x7.

c. 67x H = 87 x 67. f. (16x 35)x [111 = 12 x(16 x35).

2. a. (r5_]x 6)x 7 = 5 x(6 x7).

b. (8 x&)A 9 = 8 x(9 x 9).

c. 16x( 8 x 4). (16 x8)x k.

3. a. (67 x 50) y. 2 = 67x IGO = 6,700.
b. (5 x 13)x 2 = (13 x 5)x 2 = 13 x 10 ,, 130.
c. 8 x 700 = (8 x 7) x 100 = 56x 100 = 5,600.

4. a.

b.

c. No, subtraction is not associative.

(16 9) 3 = 7 3 = 4.
16 (9 -- 3). 16 6 = 10.

18 (7 4). 18 3 = 15.

(18 7) 4 = 11 4 = 7.
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Exercise Set 6, pp. 64-65

1. a. 7 x tg O.

b. 0 x 6
c. 75 x in 75.

Di

2. a. All whole numbers
x I =

b. All whole numbers
0 x a I = 0.

c. 0 and I

in ra

El x m E.

ili in

um

d. E x I 10.

e. I x 0

f. 111 x 7

x

El

D
131

x1 = E I etc.

0 x lil 0. etc.

D a
3. a. 3 x 7 x 85 x 0 x 96 0. N! ultiplication property of 0.

b. 576 x 1 576. Multiplication property of I.
c. (75 75) x 37 0. Multiplication property of 0.

4.
x 0 1 2 3 4 5 6 7 8 9

7 /
.0.47/474471:4:4-4114.74,47.

47/11///////0/17/11/1/1/A
Ar.*:44.4,_44

W
WA*:1

2 rff r4-444 6 8 10 12 14 16 18

3 r * 4
jP.4,44b. 9 12 15 18 21 24 27

4
eg4

41,4,t 16 20 24 28 32 36

5
Ito:P/ir,4 25 30 35 40 45

6
Pip 41/

kb.*
41,

4
'P.

36 42 48 54

7
Pip 4P.
rip 111.,.

a ' 49 56 63

8
, (p.
4Pib 4;P4 64 1 72

9 , (P4,-
. 1 81

I
Multiplication M ultiplication Commutative
Property of 0 Property of I Property

SUBTRACTION

Exercise Set 1, p. 70

1. a. Yes, B is a subset of A since B = ta, e, i, o, u) and the letters a, e, 1,
o, and u are elements of A = ( a, e, f, i,j, o, p, ul.
The subset of A composed of elements not in B is V,j, pl.

b. Yes, B is a subset of A.
The remaining subset of A is (red, white, blue).

c. Yes, B is a subset of A.
The remaining subset of A is {California, Oregon, Washington }.
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d. Yes. B is a subset of A e% en though B A.
1 he remaining subset is the empt) sod ).

e. Yes. B is a subset of A; B is the empty set. and the empty set is a sub-

SLI Of ever) set.
1 he remaining subset is IL. .01. A itself.

2. a. X 5 3. d. 3 - 3 0.
b. 4 1 3. e. 3 0 3.

c. 5 2 3.

3. B 1! C A since B and C together consist of all the elements of A. Let
A (Jim. Jack. Jerry. Janet and B (Jane }. Then the subset C of A
composed of elements not in B is (Jack. Jerry. Jim(

B u C (Jane) U (Jack. jar). Jim}
(Jane. Jack. Jerr). Jim' A.

Exercise Set 2, p. 73

1. a. 6 10 4. 4 10 - 6.
b. 1 9 8. 8 -9 1.

and

c. 0 12 12. 12 12 - 0.
d. 4 18 14. 14 18 - .1.

e. 154 221 67. 67 221 - 54.

2. a. 12 = 5 + 7 (or 12 = 7 + 5).
b. 6 -- 0 + 6 (or 6 = 6 + 0).
c. 8 = 0 4 8 (or 8 = 8 + 0).
d. 10 = 5 + 5.
e. 74 - 7 + 67 (or 74 = 67 + 7).

3. a. = 12 - 3. c. 111 = 12 - 12. e. 67 = 95 - 28.
b. 11 = 7 - 6. d. - 15 - 14.

4. a. 9+ 16 (or El + 9 . 16).

b. 1+ =4 (or + 1 = 4).
c. 2+ =6 (or 4 +2 . 6).
(2. 0 + 9 = 9 (or 9+ 0 9).

e. + 72 = 75 (or 72 + . 75).

Exercise Set 3, p. 75

1 . a. 3 - 2 ® 2 - 3.
b. (6 - .1) - 0 0 6 - (4 - 0).
c. 8 ÷ ® 8 8.

d 86x74 C---) 74 x86.
e. 6 - (4 - I) 0 (6 - 4) - 1.

2. a 8 - (4 - 1) = 5.

and 12 - (7 - 0) = 5.
d. (9 x 4) x 2 . 72 and 9 X (4 X 2) r! 72.

e. 2 x (4 + 7) 22.

b. (24 ÷ 6) + 2 . 2.
c. (12 - 7) - 0 . 5
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DIVISION

Exercise Set 1, p. t)2

1. LAAAAAA c.* *

/._\_.AAL-\,A,L lt
*

* *
*

b. -::

*
-*:

*
-.:

*
-.:: d,

.e * * *
* * * *

2. a. 6 columns
b. 4 columns

3. a. 15 4- 5 = 3.
15 + 3 = 5.

b. 24 + 6 = 4.
24 -,- 4 = 6.

2. a.

b.
c.

d.

e. 2 x II = 7.
f. 3x 0 =0.
g. No whole-number factor. (A rational number will fit.)
h. No whole-number factor. (A rational number will fit.)
i. El x 15 = O.
j. 4 x = i 52.

0 o 0 o 0 0

c. 2 columns
d. 6 columns

c. 16 + 2 = 8.
16 + 8 = 2.

d. 36 + 9 = 4.
36 + 4 = 9.

Exercise Set 2, pp. 84-86

6 = 42 + 7. 7 =
3 = 3 + 1. 1 =

10 . 90 + 9. 9 =
13 = 130 + 10. 10 =
4 = 32 + 8. 8 =

42 + 6.
3 + 3.
90 + 10.
130 + 13.
32 + 4.

6 x Ila = 30.
No whole-number factor. (A rational number will fit.)

x 9 = 99.
No whole-number factor. (A rational number will fit.)
111

3. a. 8 + 2 =
b. 6- 6 =
c. 12 4. 1 =

d. 0- 8 =
S. 55 + 11 =

4

a
El
0

Fa

8 = 4 x2 or 8 . 2x
6 -41 x 6 or 6 =6x J.

= 1 x 12 or 12 =IN x 1.
0 = 8x 0 or 0= 0 x8.

55 = 11 x MI or 55 = El x 11.

4

En

4. Any whole number will complete 0 x 0 = 0.
Ox0 =0; 0 x 1 = 0; Ox 2 =0; Ox 3 =0;etc.
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Answers to Exercises

5. a. 62 = (7 x El) + A.

b. 6 = (4x ft)+11.
c. 5 = (7 x i3)+A.
d. 55 .(11x111)+kl.
S. 57 =(7x 8 )+/E.

Exercise Set 3, p. 87

1. a. 6 ÷ 2 ® 2 ÷ 6.
b. (6 4. 2)-s. 1 0 6 -:.(2 ÷ 1).
c. (16 ÷ 4) -E- 2 ® 16 4- (4 + 2).
d. (12 4.6)x 2 ® 12 ÷(6 x2).
e. 12 x(6 + 2)® (12 x 6)÷ 2.

2. a. 8 4.(4x 2). 1.
b. 8 (4 ÷ 2) = 4.
c. 12 -:- (3 + 1) = 3.
d. (12 -.-- 3) I = 3.
e. 12 4. (3 x 2) = 2.

Exercise Set 4, pp. 90-91

1. An array of 9 rows and 9 elements has I column:

*
*
*
*

9 rows *
*
*
*
*

I column

9 -:. 9 = I.

2. The expressions in a, b, d, and f, because
a. 0 + 7 =0.
b. 14 14 = 0.
c. 9 0 = 9.
d. I x 0 = 0.
e. 0 - 0 is meaningless.
f. 0 ÷ I = O.

3. The expression in c because 0 - a = 0, provided a # 0.

.81
11
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ADDITION AND SUBTRACTION ALGORITHMS

1. a. 53-t 15 (50

(50

- 60

= 68.

Exercise Set 1, p. 99

3) + (10 + E11)

4- ) (3 + 5)

t 404

b. 27 + 35 (2U + 7) (30 + /21)
- (IKE + 30) + (7 -f t.t,)
= 50 12

50 + ( 2)

= (50 + ) j 2
= 60 +2
= 62.

2. a. 19 + 67 = (10 + 9) + (60 1- 7 )
= (10 + 60) + (9 + 7)
= 70 + 16
= 70 + (10 + 6)
= (70 + 10) + 6
= 80 +6
= 86.

b. 173 f 8 (100 + 70 + 3) + 8
100 + 70 (3 + 8)

= 100 + 70 + II
z: 100+ 70 + (10+ I)
= 100 (70 + 10) + 1
= 100 + 80 + 1
= 181.

c. 231 + 36 = (200 + 30 + I) + (30 + 6)
= 200 + (30 + 30) + (1 +6)
= 200 + 60 + 7
= 267.

d. 97 + 24 = (90 + 7) + (26 + 4)
= (90 + 20) + (7 + 4)
= 110 + 11
=(100+ 10) + (10 + 1)
= 100 + (10 + 10) + I
= 100 + 20 + 1
= 121.

e. 208 + 523 = (200 + 8) + (500 + 20 + 3)
= (200 1- 500) + 20 + (8 + 3)
= 700 + 20 + II
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Answers to Exercises

= 700 + 20 + (10 + 1)
.= 700 + (20 + 10) + I

- 700 + 30 + 1
731.

f. 145 + 278 . (100 + 40 + 5) + (200 4,.. 7() + 8)
(100 + 200) + (40 + 70) + (5 + 8)
300 + 110+ 13

- 300 + (100 + 10) + (10 + 3)

1.

= 400 + 20 + 3
= 423.

Exercise Set

78 = 70 +8
23 = 20 + 3

2, p. 102

50 + 5 = 55.
2. 63 = 60 + 3 = 50 + 13

7= 7= 7

50 + 6 = 56.
3. 52 = 50 + 2 --, 40 + 12

39 = 30 + 9 = 30 + 9
10 + 3 = 13.

4. 348 = 300 + 40 + 8 = 200 + 140 + 8
92= 90 + 2 = 90 +2

200 + 50 + 6 = 256.
5. 403 = 400 + 3 = 300 + 100 + 3 = 300 + 90 + 13

126 = 100 + 20 + 6 = 100 + 20 + 6 = 100 + 20 + 6
200 + 70 + 7 = 277.

6. 500 = 400 + 100 = 400 + 90 + 10
278 = 200.+ 70 + 8 = 200 + 70 + 8

200 + 20 + 2 = 222.

Exercise Set 3, p. 103

1. a. Add 3 to both 629 and 297.
629 - 297 = (629 + 3) - (297 + 3)

= 632 - 300 = 332.
b. Add 5 to both 4,384 and 1,995.

4,384 - 1,995 = (4,384 + 5) - (1,995 + 5)
= 4,389 - 2,000 = 2,389.

2. This amounts to adding 10 to both 53 and 26. In one case we add it to the
ones and in the other to the tens:

53 - 26 = (53 + 10) - (26 + 10)
53 + 10 = 50 + (10 + 3) . 50 + 13
26+ 10 = (20 + 10) + 6 . 30+ 6

20 + 7.
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Exercise Set 4, p. 108

1. a. 32 1, b. 131-1,,,c
43 ,,,c 14 is

130 301

c. 1 32 IRc

204 f,,c

34 1 fs

d. 1 30410c

_431"
2 102

2. BASE-EIGHT ADDITION TABLE:
fAll &ages To Be interpreted as BaseErght Numerals)

4 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 4 6 7 10

2 2 3 4 5 6 7 10 11

3 3 4 5 6 7 10 11 12

4 4 5 6 7 10 11 12 13

5 5 6 7 10 11 12 13 14

6 6 7 10 11 12 13 14 15

7 7 10 11 12 13 14 15 16

a. 42 aght b. 53 atilt

I 5 cot I 7 corhi

C. 16203 d.

57 sight 72 tight 203 co,

MULTIPLICATION ALGORITHMS AND
THE DISTRIBUTIVE PROPERTY

Exercise Set 1, pp. 114-15

1. a. 8x(6+ 3). (8x6)+ (8x3).

b. 6x(4+ 7). (6x4)+ (6x7).
c. 3x(6+5).(3x6)+(3x5).
d. 6 x (7 + 8) .-,. (6x 7) + (6 x 8).

2. a. 8

4

4 x 8

3

4 x 3.---.........
4 x (8 + 3)

184
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b.
3

x x

x x

5 x x

x x

x x

5 x 3

x

x

x

x

x

X x

X x

X x

X x

X x

5x2

5x(3

Answers to Exercises

(5 x 3)+(5 x 2).

c.

d.

5 x (3 + 2)

2

7.

1

10
YYYYYYYYYY

YYYYYYYYYY

5 YYYYYYYYYY

YYYYYYYYY7

YYYYYYYYYY

5x 10

3

YYY

YYY

YYY

YYY

vvy

5 x 3

7 x(2 + 1)= (7x2) +(7x1).

5 x (10 3) (5 x 10) 1 (5 x 3).

3. 3x(5

5 x(10 +

+ 4).(3x5)+(3x4).
5

0 0 0 0 0 o
4

0 0 0

3 0 0 0 0 0 o o 0 0

0 0 0 0 0 o o 0 0

3 x 5 3 x4

3 x(5 + 4)

4. a. 5 + 18 = 23.
b. 5 + (2 x 9) = 23.
c. (5 + 2) x (5 + 9) = 7 x 14 98.

No, addition is not distributive over multiplication. If it v.ere
5 + (2 x 9) would equal (5 + 2) x (5 + 9).

185



Mathematics for Elementary School Teachers

Exercise Set 2, pp. 119-20

1. a. 3 x (4 + 5) = '3 x 4) + (3 x 5). D
The 3 is "distributed" over the 4 + 5.

b. 3 x (4 + 5) (4 + 5) x 3. C
The 3 and the 4 + 5 are interchanged, or "commuted."

c. (4 + 5) x 3 - (4 x 3) + (5 x 3). D
This is the second form of the distributive property, where the
"distributivity" is done from the right."

d. (4 x 3) (5 x 3) -- (5 x 3) + (4 x 3). C

The 4 x 3 and the 5 x 3 are commuted.

e. 3 x (4 x 5) (3 x 4) x 5. A
This is an instance of the associative property of multiplication.

2. b. 7x 15 = 7x(6 +9)
=(7x6) +(7x9)
= 42 + 63
= 105,

or
7 x 15 = 7 x(7 + 8)

(7 x 7) + (7 x 8)
49 + 56

= 105,
etc.

c. 13 x 8 = (6 7)x8
= (6 x 8) + (7 x 8)

48 + 56
104,

or
13 x 8 -_- (9 + x 8

(9 x 8) + (4 x 8)
72 + 32
104,

etc.

d. 26 x 6 .(9 + 9 + 8)x 6
= (9 x 6) + (9 x 6) + (8 x 6)
= 54 + 54 48
= 156.

3. b. (98 x 2) + (2 x 2) = (98 + 2) x 2
100 x 2

= 200.

c. (6 x 189)+ (6x II). 6 x(189 + II)
= 6 x 200
= 1,200.
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1. b. 259

c. 35

d. 4,560 .

e. 408 =

2. a. 7 x 16

b. 5x97

Exercise Set 3, pp. 123-24

200 + 50 + 9.

30 + 5.

4,000 + 500 + 60 + 0 or 4,000

400 + 8 or 400 + 0 + 8.

= 7 x(I0 + 6)
= (7x 10) +(7x6)
= 70 + 42
= 112.

= 5x(90+

+ 500 + 60.

. (5 x 90) + (5 x 7)
= 450 + 35
= 485.

c. 3 x 655 = 3 x (600 + 50+ 5)
= (3x600) +(3x50) +(3x5)
= 1,800 + 150 + 15
= 1,965.

3. a. 147

x 4

284-4 x 7
1604-4 x 40
4004-4 x 100
588+-4 x 147

5

b. 1,508
x 3

24+-3 x 8
1,500 4-----3 x 500
3,000 4-3 x 1,000
4,524E -- -3 x 1,508

1. a. 21 x32 .

=

.

=

Exercise Set 4, pp. 126-27

(20+ 1)x32
(20 x 32) + (1 x 32)
(10 x 2x 32)+(I x32)
(10 x 64) + 32
640 + 32
672.

b. 34 x 156 = (30 + 4) x 156
. (30 x 156) + (4 x 156)
. (10 x 3x 156)-1 (4x 156)
. (10 x 468) + 624
= 4,680 + 624
= 5,304.
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2.

* *
*

6

is * 1 1 *
Is 11Now

DIVISION ALGORITHMS

10 2

Exercise Set 1, pp. 135-36

1. a. 23 = ( 4 x 5) +

b. 5 =(0 x7)+1.
c. 6 .(11x6)+L
d. 97 = (10 x 9) +

e. 38 =( 6 x6)+1.
f. 31 = (iii x 4) +

g. O.( x8)+&,.
h. 61 = ( x 20) +

2. The number for the triangle is less than the second number represented
on the right-hand side of the equal sign.

3. No.

1. q= 12, r = 3.
2. q = 10, r = O.

Exercise Set 2, p. 137

3. q = 1, r =4.
4. q = 0, r = 6.

5. q = I, r = O.

Exercise Set 3, pp. 14041

1. All solutions are correct. A total of 86 nines may be subtracted from 781.
The order in which the nines are subtracted does not affect the answer.

2. a. q = 52, r = 9.

b. q = 27, r = 2.
c. q = 104, r = O.

d. q = 34, r = 73.
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1. 4 = I5,r = 7.
2. q = 34, r = 18.

1. q = 585, r = 3.
2. q = 173, r = 22.

Answers to Exercises

Exercise Set 4, p. 142

3. q = 62, r = 30.
4. q = 105, r = O.

Exercise Set 5, p. 147

3. q = 192, r = 16.
4. q = 400, r = 21.

THE WHOLE-NUMBER SYSTEMKEY IDEAS

Exercise Set 1, pp. 152-53

1. The following pairs of sets are equivalent: A and B, A and E, B and E;
C and G; D and F.

NOTE.-- Any set is, of course, also equivalent to itself: for example, A
is equivalent to A, B is equivalent to B, etc.

2. Two sets are equivalent if they can be matched with a one-to-one
correspondence.

3. n(A) = I. n(C) = 2. n(E) = I. n(G) = 2.
n(B) = I. n(D) = 3, n(F) = 3. n(H) = 0.

4. Two sets are assigned the same number when they are equivalent.

5. A and F, B and D, D and G.

6. Twb sets are said to be disjoint if there is no element common to both
sets.

7. Find Set having the number property 2, such as A = fr, 4 and a set dis-
joint from A with the number property 3, such as B = {u, v, w). Then count
the number of elements in A U B.

2 + 3 = n(A U B)
= n(lr, s, u, v, wl)
= 5.

8. Let A be a set such that n(A) = a. Let B be a set, disjoint from A, with
n(B) = b. Then

a + b = n(A U B).
9. a. A x B = {(a, 2)).

b. A X C = 1(a, John), (a, Mary)).
c. C x D = {(John, 0), (John, I), (John, 2), (Mary, 0), (Mary, I),

(Mary, 2)).
d. D x C. 1(0, John), (I, John), (2, John), (0, Mary), (I, Mary),

(2, Mary)).
e. D x E = 1(0, 7), (I, 7), (2, 7)).
f. D x F = 1(0, a), (0, b), (0, c), (I, a), (I, b), (I, c), (2, a), (2, b), (2, c)).
g. D x G = 1(0, 1), (0, blue), (I, 1), (1, blue), (2, I), (2, blue)).
h. Dx11.1 I.
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10. n(A xB) = I,
n(A xC) =2,
n(C X D) = 6,

n(D X C) =6,

1 x 1 = 1. n(D x E) = 3, 3 x 1 - 3.
1 x 2 .-.- 2. n(D x 1) = 9, 3 x 3 - 9.
2 x 3 . 6. n(D x G) , 6, 3 x 2 6.

3 x 2 . 6. n(D x II) .- 0, 3 x 0 - 0.

11. Let sets A and B be chosen such that n(A) = a, n(8) = b. Then
a x b = n(A x B).

12. a. 2 + 3 =5
b. 5 - 2 = 3

13. Let A be a set such that n(A) = a. Let B be a subset of A such
that n(B) .- b. Let C be those elements of A that are not in B. Then

a - b = n(C).

or 3 + 2 =5.
and 5 - 3 = 2.

14. Co o o o
Co o o o .)

12 4. 3 = 4.
12 ÷ 3 = 4.

When a set of 12 elements
There are 4 sets, is partitioned into 3
each having 3 disjoint equivalent sets,
elements. each set has 4 elements.

..:
15. a. (4) d. 2) g. 10,

b. 10) e. (0, I, 2, 3) h. 10,
c.

1 1
f. 3, 4, 5, 6, 7, 8, 9) i. (0,

1,

3,

6,

2)

6, 9, 12,
12, 18)

15, 18)

Exercise Set 2, pp. 157-61

(There are correct solutions other than those given here.)

1. a. Addition is commutative.
b. Addition is associative.
c. Addition is associative:

35 +2 =

=

=

=

1,30 + 5)
30 -t (5
30 + 7
37.

+ 2
+ 2)

d. Addition is associative:
35 +9 = (30 + 5) + 9

30 + (5 + 9)
= 30 + (14)
= 30 + (10 + 4)
= (30 + 10) + 4
= 40 +4
,,.. 44.

e. Solution I:
(a -I b) - c . a + (h - c), for b not less than c. Thus
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(30 + 5) 2 -- 30 + (5 2)
. 30 i 3
= 33.

Solution 11:
(a + b) b = a, from our definition of difference. Thus

35 2 = (33 + 2) 2
= 33.

f. (a + b) c = a + (b c) provided b is not less than c:
35 -9 = (20 + 15) 9

= 20 + (IS 9)
= 20 + 6
= 26.

g. a b = (a + c) (b + c). For proof, see Exercise 7 below.
h. Multiplication distributes over addition.

3 x (32) = 3 x (30 + 2)
= (3 x 30) + (3 x 2)
= 90 + 6
= 96.

i. Multiplication distributes over addition, and addition is associative.
3 x (34) = 3 x (30 + 4)

= (3 x 30) + (3 x 4)
= 90 + 12
= 90 + (10 + 2)
= (90 + 10) + 2
= 100 + 2
= 102.

j. Multiplication is commutative.
k. Multiplication is associative.
I. For every number a, a x 0 = 0 from the multiplication property of 0.
m. Distributive property.
n. 12 + 3 is by definition that (unique) number which satisfies the sen-

tence 0 x 3 = 12. Since 4 is the only number which fits this sentence,
it follows that 12 -:- 3 = 4.

n. 12 + I is by definition that (unique) number which satisfies the sen-
tence 0 x I = 12. Since 12 is the only number which fits this sentence,
it follows that 12 -:- I = 12.

p. Expressions of the form "a -. 0" where a is a whole number are
meaningless, as they never name a specific whole number.

2. a. 678 = R] x 100 + & x 10 + W x 1.
b. + 38 = 78

3. Solution 1: If A and B are disjoint sets ....iving a elements and h elements
respectively, then a + b is the number of elements in A U B. Now (a + h) h
is, by definition, the number of elements of A U B that are not in B. But, if we
remove from A U B the elements of B, we arc left with set A. Hence

(a + h) b = a.
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Solution II: Consider the sr tence
=I + b . a + b.

The missing addend for the :tame is a, because a + b = a + h. But, from our
definition of a difference, this missing addend is also (a + h) - h. Since there
can be just one missing addend for the first sentence, it follows that

(a + b) - b = a.
Solution I!!: Suppose a number S is such that

S - b = a.
By definition of a difference, S - b is the missing addend in the sentence

D + b = S.
But we already know that this missing addend S - b is actually a. Consequently

a + b = S,
showing that the number S is a + b. Using this value for S in the sentence

S - b = a,

(a + b) - b = a.
This generalization is conveniently expressed as follows:

A sum (a + b) less one of its addends (b) is the other addend (a).

4. By definition, a - b is the missing addend in the sentence 0 + b = a.
Consequently, (a - h) + b = a.

5. (a + h) - c = (a + l(b - c) + cJ) - c [since b = (b - c) + c, by Ex-
ercise 4J

= ((a + (b - c)] + c) - c (since addition is associative)
= a + (h - c), by Exercise 3.

we obtain

6. (a - b) - c = l(la (b + c)] + (b + c))- bJ - c (see Exercise 4)
= (1((a - (b + c)] + c) + bJ - b) - c (addition is commuta-

tive and associative)
= ((a - (b + c)] + c) - c (see Exercise 3)
= a - (b + c) (see Exercise 3).

7. (a -! c) - (b + c) = (((a - b) + b] + c) - (b + c)(see Exercise 4)
= [(a - b) + (b + c)] - (b + c)(addition is associative)
= a -- b (see Exercise 3).

8. (a - c) - (b - c) = l(a - c) + cJ - [(b - c) + c] (see Exercise 7)
= a - h (see Exercise 4).

9. (a + b) - (c + d) = (la - cJ + c + ( b - dJ + d) - (c + d) (see Exercise4)

= (la - cJ + lb - dJ + lc + dJ)- (c + d) (rearrangement)
= (a - c) + (b - d) (see Exercise 3).

10. a - (c - d) = l(a c) + (1- (c - d) (see Exercise 4)
=1(a - c) + (c - d) + di - (c - d) (see Exercise4)
= [(a - c) + d + (c - d); - (c - d) (rearrangement)
= (a - c) + d,
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11. (a b) + c = c + ;a b) (addition is commutative)
=. (c + a) b (see Exercise 5)
= (a + c) b (addition is commutative).

12. a + b = Ra + c) ej + b (see Exercise 4)
= Ra + c) + b] c (see Exercise I I)
= (a + c) + (b c) (see Exercise 5).

13. (I) axb = axb.

(a x b) + b = a.

(2)a + b = a + b.

(a + b)xb = a.

For specific values of a and b, a x b
names but one whole number.

A product a x b divided by one o! its
factors is the other factor.

For specific values of a and b, a + b
names but one whole number (b * 0).

In the expression a-:- b= a+ b con-
sider a to be a product and b one of its
factors.

14. Corresponding generalizations will be denuied by the symbol "' " next
to the numeral. For example, the generalization corresponding to 4 will be de-
noted by 4'.

4': For any whole numbers a and b with a -:- b a whole number,
(a + b)x b = a.

5' : For any whole numbers a, b, and c with b -4- c a whole number,
(a x b) -s- c = a x (b + c).

6' : For any whole numbers a, b, and c with a -4. (b x c) a whe, number,
(a 4- b) + c = a + (b x c).

71 : For any whole numbers a, b, and c with (a x c) + (b x c) a whole number,
a + b = (a x c) + (b x c).

8': For any whole numbers a, b, and c with (a ÷ c) + (b + c) a whole number,
(a + c) + (b + c) = a + b.

9': For any whole numbers a, b, c, and dwith (a + c) x (b + d) a whole number,
(a x b) + (c x d) = (a + c) x (b + d).

10': For any whole numbers a, c, and d with a -2- (c + d) a whole number,
a + (c + d) = (a + c)x d.

I If : For any whole numbers a, h, and c with b * 0,
(a .4- b)x c = (a x c) + b.

15. Let n(A) = a, n(B) = b, with A and B disjoint sets. Let n(A') = a,
n(B') = b, with sets A' and B' disjoint. We must show that n(A U B)
= n(A' U BI). This will hold provided we prove A U B equivalent to AlU Bi .

If n(A) = a and n(A') -: a, it follows that A and Ai are both equivalent to
the set C = (I, 2, ... , a), the set of counting numbers from I up to and in-
cluding a. We now show that A and A' are equivalent by showing they can be
matched with a one-to-one correspondence. Let x be an element of A. As A

and C are equivalent, there is a one-to-one correspondence between A and C.
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Under this correspondence, x in A will be paired with some element in C, say
y. Under the one-to-one correspondence between C and A', y will be paired
with some element x' in A'. Under these two fixed matchings of A with C
and C with A' we establish a one-to-one correspondence between A and A'
that pairs x with x' (through y) and similarly provides pairings for all
the other elements of A and A' . These pairings provide a one-to-one corre-
spondence between A and A' so that A and A' are equivalent. Similarly we show
that B and B' Lice equivalent. To show A U B and A' U B' equivalent, let x be
a member of A U B. If x is in A, let x' of A' be its partner under the corre-
spondence between A and A' . If x is in B, then let x' of B' be its partner under
the correspondence between B and B' . As A and B are disjoint and A' and Bi
are also disjoint, the matching will be a one-to-one correspondence between
A U B and A' U B' . As A U B and A' U B' are now equivalent, both will have
the same number assigned, a + b. Hence, it does not matter which sets A and
B are chosen provided they are disjoint and

Then
n(A) = a, n(B) = b.

n(A U B) = a + b.

16. a. (36 x 47) + (47 x 64) = (47 x 36) + (47 x 64)
= 47 (36 + 64)

47 x 100
= 4,700.

b. 25 x (36 x 4) = 25 x (4 x 36)
= (25 x 4) x 36
= 100 x 36
= 3,600.

c. 575 298 = (575 + 2) (298 + 2)
= 577 300
= 277.

d. 575 + 298 = (573 + 2) + 298
= 573 + (2 + 298)
= 573 + 300
= 873.

e. 575 .4. 25 = (575 x 4) + (25 x 4)
= 2,300 ÷ 100
= 23.

17. If a < b, then for some whole number w * 0, a + w = b. But
then (a + w) + c = b + c. Rearranging addends, we get

(a + c) + w = b + c.
Hence

a + c < b + c, as w * 0.

18. Asa w b, for w # 0,
(a + w) c b c.

Then

Then
(a c) + w = b c (see Exercise 5).

a c < h c. as w 0.
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19. If a < b, then a + w = b with w * 0. If b < c, then b + w' = c with
w' * 0. Hence

(a + w) + w' =c

a + (w + w') = C.
But w* 0, w' * 0, so that w + w' # 0. Hence a < c.

Or

20.a. Let one odd number be 2a + I, the other odd number be 2b + I.
Then their sum will be

(2a + I) + (2b + I) = (2a + 2b) + (I + I)
= 2(a +b) + (2 x I)
= 2(la + bJ + I).

As (a + b) + I is a whole number, 2(la + bJ + I) is an even number.

b. Let 2a be the even number, 2b + I be the odd number. Then their
sum will be

2a + (25 + I) = (2a + 2b) + I
= 2(a + b) + I.

As a + b is a whole number, 2(a + b) + I is an odd number, as it is
I more than an even number.

c. Let the even number be 2a and c be the other factor. Then their prod-
uct will be

(2a) (c) = 2(ac).
But ac is a whole number. Hence 2('ac) is even.

d. Let 2a + I be one odd number, 2b + I be the other odd number.
Then their product will be

(2a + I) (2b + I) = (2a + I) (2b) + (2a + I) (I)
= even number + odd number (see c).
= odd number (see b).

21.a.

b.

c.

Count the elements in the union.

Count the elements in this set as
4 + 2 = 6

or
6 2 = 4.

Count the elements in this array.

d. As 3 x2 = 6, 6+2 = 3.
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Exercise Set 3, pp. 163-64
1.

-

NUMI:tk PAIR
+

SUM
-

DIFFERENCE
x

PRODUCT
,

QUOTIENT
V

AVERAGE

(12.4) 16 8 48 3 8

(44,4) 48 40 176 II 24

(4, 4) 8 0 16 1 4

(4, 12) 16 48 8

(2, 0) 2 2 0 !

(0, 2) 2 0 0 !

(0, o)

2.

NUMBER DOUBLE TRIPLE SQUARE SUCCESSOR PREDECESSOR

6 2 x 6
or 12

3 x 6
or 18

6 x 6
or 36

6 + 1 or
7

6 - 1 or 5

2 2 x 2
or 4

3 x 2
or 6

2 x 2
or 4

2 + 1 or
3

2 - 1 or 1

7 2 x 7
or 14

3 x 7
or 21

7 x 7
or 49

7 + 1 or
8

7 - 1 or 6

1 2 x 1

or 2
3 x 1
or 3

1 x 1
or 1

1 + 1 or
2

1 - 1 or 0

0 2 x 0
or 0

3 x 0
or 0

0x0
or 0

0 + 1 or
1

10 2 x 10
or 20

3 x 10
or 30

10 x 10
or 100

10 + 1 or
11

10 - 1 or 9

Exercise Set 4, p. 164

1. 5 is less than 7 because 5 + 2 = 7.

2. "a is less than b" means "there is a number c * 0 such that a + c = b."
3. "a b" is meaningful in whole numbers whenever a is not less than b.
4. If a < b, then for some c * 0, a + c = b. But then

(a + c) +I=b+ I
or

(a + 1) + c = b + I (rearranging addends).
Therefore,

a+ I < b + I, as c * O.
5. By pairing a pencil with a crayon until one collection or both are ex-

hausted. If Jne is exhausted before the other, the exhausted collection
had fewer elements. If both collections were exhausted at the same time, the
collections had the same number of elements at the beginning.

6. a = b, a < b, b < a.
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The particular words and symbols in this glossary have
been selected to help clear op any possible misunderstand-
ing. Usually a description rather than a precise definition
is given. Moreover, not all the meanings are given but only
those needed for the text materials. Examples are pro-
vided to clarify meanings still further.

Abacus. An ancient device (still used today) for computing. A common
type consists of a frame with parallel rods. The rods are usually
matched with the ones place, the tens place, the hundreds place,
and so on. Movable counters along the rods record numbers and
are used 10 carry out computation.

Addend. One of the numbers added to determine a sum. When a pair
of numbers is associated with a sum under addition, each number
of the pair is called an addend of the sum. In the sentence
6 + 7 = 13, the numbers 6 and 7 are addends. In more general
terms, a + h is the sum of its addends a and b. In the sentence
6 + 0 = 13, )ne of the addends is "missing." See Missing addend.

Addition. With every pair of numbers a and b, addition associates the
sum a + b. For example, with the pair 13 and 6, addition associates
13 + 6, or 19. The sum a + b may be determined in the following
way:
If A and B are disjoint sets such that n(A) = a and n(B) = b, then

a + b = n(A U B).
Addition property of zero. For every whole number b, b + 0 = b and

0 + b = b. Informally stated, the sum of every whole number and
zero is the given whole number. See Identity element for addition.

Additive property of numeration systems. Each symbol in a numeral
stands for a number. The sum of these numbers is the value of
the numeral. In XXIII, the individual symbols stand for 10, 10,1, 1,
and 1. Becai se of the additive property, the number represented by
XXIII is 10 + 10 + ; + 1 + 1, or 23.

Algorithm (algorism). A systematic, step-by-step procedure for reach-
ing some goal. An algorithm for a subtraction computation is
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a systematic procedure for obtaining a standard name for a
lifference. See Compute.
one of the possible algorithms for computing 624 397 yields the
following steps:

(a) 6 2 '4
(b) 6 2 4

(c) 6'2'4
39,7 3,9,7 3,9,7

7 27 2 2 7

Array, rectangular. A rectangular arrangement of objects in rows and
columns. The array belOw, viewed both as a whole and as split into
two parts, illustrates the distributive property.

6

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* ft * * * * * * *

9

* * * *
* *
* * * *
* * * *
* * * *
* * * *

4
The large array has 6 rows and 13 columns. We say that it is a
6-by-13 or 6 x 13 array. The 6 x 13 array is shown partitioned into
two arrays, a 6 x 9 array and a 6 x 4 array, showing that
6 x (9 + 4) = (6 x 9) + (6 x 4).

Associative property of addition. (Also called the grouping property of
addition.) Whenever a, b, and c are whole numbers, a + (b c) =
(a + b) c. That is, when numbers are added, the grouping of the
numbers does not affect the sum. An instance of this property is
the fact that 6 + (9 + 4) = (6 + 9) + 4. Subtraction, on the other
hand, is not associative. A single exception, although there are
many, suffices to show this: (8 5) 2 8 (5 2).

Associative property of multiplication. (Also called the grouping property
of multiplication.) Whenever a, b, and c are whole numbers,
a x (b x c) = (a x b) x c. That is, when numbers are multiplied, the
grouping of the factors does not affect the product. An instance of
this property is the fact that 3 x (7 x 5) = (3 x 7) x 5. Division, on the
other hand, is not associative. A single exception, although there are
many, suffices to show this: (8 .+ 4) 2 8 (4 ÷ 2).

Base. A number used as a repeated factor. In the expression
10' = 10 x 10 x 10, for example, the base is shown to be 10. We
refer to 3 as the exponent. See Exponent and Factor. The symbol
"10" is a name for the number ten in our Hindu-Arabic decimal
numeration system, but it is not a name for the number ten in sys-
tems with other bases.

Base-sixty system. A system of writing numerals designed to represent
ones, sixties, sixty sixties, and so on.
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Base-ten system. A system of writing numerals based upon ones, tens,
ten tens, and so on. The Egyptian system of numeration is a base-

ten system, as is the Hindu-Arabic system.

Column. A vertical line of objects in an array. The array below has three
columns.

* *
* *
* *
* *

(---------- a column

Commutative property of addition. (Also called the order property
of addition.) Whenever a and b are whole numbers, a + b = b + a.
That is, when two numbers are added, the order in which the num-
bers are added or the order of the addends does not affect the sum.

An instance of this property is the fact that 9 + 4 = 4 + 9.

Commutative property of multiplication. (Also called the order prop-

erty of multiplication.) Whenever a and b are whole numbers,
a x b = b x a. That is, when two numbers are multiplied, the order
in which they are multiplied or the order of the factors does not
affect the product. An instance of this property is the fact

that 6 x 14 = 14 x 6.
Computation. A process for finding the standard numeral for a sum, a

product, etc.; a process for finding a standard name.

Compute. To find a standard numeral for a sum, a product, etc.
To compute the sum of 34 and 8 means to find the standard nu-
meral for 34 + 8, namely "42." To find a standard name.

Correspondence. A pairing of the members of two sets whereby each
member of the first set is paired with a member of the second set,
and never with more than one member of the second set. See also
One-to-one correspondence and Operation.

Counting. The process of pairing the elements of a set with the counting
numbers taken "one after another" in order of "size" and starting
with I. If this process stops, the last counting number used is the
number of elements in the set being counted. When this happens,
the set is said to be a finite set, and the number associated with the

set afinite number. Every whole number is a finite number.

Counting number. Any whole number other than 0. (Some authors in-
clude 0 among the counting numbers.)

Cross product. The cross product of a pair of sets is the set of all
ordered pairs whose first element is from the first set and whose
second element is from the second set. The cross product of {a, b}

and {x, y, z} is ((a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}. See Symbol, X.

Decimal. Pertaining to ten (from the Latin word decima, meaning
"tithe" or "a tenth part.")
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Decimal numeration system. A system for naming numbers based on
tens. See Hindu-Arabic system of numeration.

Difference. A number assigned to certain pairs of whole numbers by
subtraction. 18 11, or 7, is the difference of 18 and 11. See Miss-
ing addend. a b is the difference of a and b, provided a is not
less than b. If a set A has a elements and one of its subsets, B, has
h elements, then the number of elements in A but not in B is a b.
Alternately, the difference a b is the missing addend in 0 b = a.

Digits. The basic symbols in a numeration system. In the Hindu-Arabic
system the digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Disjoint sets. Two sets are disjoint if they have no elements in common.
If a, b, c, d, and e are distinct objects, then the sets {a, b} and lc, d, e),
are disjoint; but the sets la, b) and {b, c} are not disjoint.

Distributive property, or distributive property of multiplication over addi-
tion. Whenever a, b, and c are whole numbers,

a x (b + e) = (a x b) + (a x c).
An instance of this property is the fact that

13 x (8 + 7) (13 x 8) + (13 x 7).

Because multiplication is commutative, the distributive property
may also be written in the form (b + c) x a = (b x a) + (c x a).

Dividend. In the sentence a 4- b = q, the number a is called the dividend.
The number a is also called the dividend in the sentence
a = (q x b) + r. with r < b. In the sentence 15 4- 3 = 5, the num-
ber 15 is the dividend. In the sentence 15 = (2 x 7) 1, the number
15 is again the dividend.

Division. With certain pairs of whole numbers, a and b, division asso-
ciates the quotient, a ÷ b. Division assigns to certain pairs of whole
numbers a and b a unique whole number a ÷ b. Such a unique
whole number a ÷ b exists provided b # 0 and there is a number c
such that c x b = a. For example, 51 ÷ 3 = 17 because 17 x 3 = 51.
(Of course 3 * C.) Division assigns 72 ÷ 9, or 8, to the pair
72 and 9. The standard name for a b can be obtained in three
ways:
1. If a set of a elements can be partitioned into disjoint subsets of

b elements each, then the number of subsets thus formed is a b.
2. If an array has a elements and b rows, then the number of

columns of the array is a b. If an array has a elements and b
columns, then the number of rows is a ÷ b.

3. If a and b are whole numbers, the whole number that correctly
completes the sentence b x D = a, or 0 x b = a, is a b, pro-
vided there is exactly one such whole number.

Division by zero. Division by zero has no meaning. The expressions 5 -4- 0,
18 4- 0, 0 ÷ 0, 1 4- 0, etc., do not name numbers. Division by 0
is meaningless because there are no whole numbers that fit
sentences like the ones at the top of the following page,
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0 x = 5, D x 0 = 18, 0 x = 1, etc.,
and because every whole number fits the sentence 0 x 0 = 0.

Division with a remainder assigns a quotient and a remainder to a pair
of whole numbers. if a and b are whole numbers (b * 0), then there
are whole numbers, a quotient q and a remainder r (with r < b),
which satisfy the equation

a= (b x (1) r.
If a = 23, b = 4, division with a remainder determines q = 5 and
r = 3.

23 = (4 x 5) + 3.

Divisor. In the sentence a b = q, the number b is called the divisor.
The number b is also called the divisor in the sentence a = .(q x b) r.
For example, in the sentence 15 -s- 3 = 5, the number 3 is the divisor;
in the sentence 15 = (3 x 4) + 3, or 15 = (0 x 4) + A, the number
4 is the divisor.

Element of a set. Each object in any nonempty set. of objects is an element
of the given set. For example, the set (New York, California,
Michigan) has three elements: New York, California, and Michigan.

Empty set. The set that has no elements, the null set. Often designated
by either the symbol I or 0. Examples: the set of people 30 feet
tall; the set of female presidents of the United States.

Equal sign. See Symbol.
Equivalent. If there is a one-to-one correspondence between two sets,

then the sets are said to be equivalent. Sets that are equivalent are
assigned the same number. Sets that are not equivalent are not as-
signed the same number. Examples of equivalent sets are (a, bl and
(blue, green).

Expanded form. An expanded form of a decimal numeral is a n aeral
that shows explicitly the place value of the digits in a decimal
numeral. Expanded forms of the numeral 456 include:

400 + 50 + 6
(4 x 100) + (5 x 10) + (6 x 1)
(4 x 10') + (5 x 10) + (6 x 1)

(4 x 102) + (5 x 10') + (6 x 10")
Exponent. A number used to indicate a repeated factor. The repeated

factor is called the base. In 10', 2 is the exponent and 10 is the base.
102 means 10 x 10. In 10' 3 is the exponent and 10 is the base. 10'
means 10 x 10 x 10. See Base.

Factor. One of the numbers multiplied to determine a product. When a
pair of numbers is associated with a product under multiplication,
each number of the pair is called a factor of the product. In the
sentence 3 x 4 = 12, 3 and 4 are factors of 12. In general terms, if
a x b = c, a and b are factors of c. In the sentence 3 x O = 12,
one of the factors is "missing." See Missing factor.
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Family. A collection of sets, every two of which are equivalent.
Greater than

1. Whole number a is greater than whole number b if there is a
whole number c, other than 0, such that a = b + c. For example,
5 is greater than 3 because there is the whole number 2 such that
5 = 3 + 2.

2. Whole number a is 'greater than whole number b if there are two
sets A and B such that set A contains all the elements of set B, A
has at least one element not in B, a is the number of elements
in set A, and b is the number of elements in set B. For example,
5 is greater than 3 because (see A
diagram) n(A) = 5, n(B) = 3, and
set A has elements d and e which
are not in set B.

3. Let whole number a be the nurabet of elements in set A. Let
whole number b be the number of elements in set B. We say that
a is "greater than" b if and only it set B can be matched with a
proper subset of set A. (In this case, we lay that set A has "more"
elements than set B.)

Grouping property of addition. See Associative property of addition.
Grouping property of multiplication. See Associative property of mul-

tiplication.
Hindu-Arabic system of numeration. Our decimal system for naming

numbers. All whole numbers can be expressed using ten digits and
the idea of place value.

Identity element for addition. The number 0 is the identity element for
addition of whole numbers because whenever b is a whole number,
b + 0 = b and 0 + b = b. That is, when 0 is an addend, the sum is
the same number as the other addend. The number 0 is sometimes
called the neutral element for addition. For example, 4 + 0 = 4;
0 + 56 = 56; etc.

Identity element for multiplication. The number 1 is the identity element
for multiplication of whole numbers because whenever b is a whole
number, b x 1 = b and 1 x b = b. That is, when 1 is a factor, the
product is the same as the other factor. The number 1 is sometimes
called the neutralelement for multiplication. For example, 4 x 1 = 4;
1 x 56 = 56; etc.

Known addend. In a sentence such as + 8 = 14, 8 is the known
addend, or given addend. See Missing addend.

Known factor. In a sentence such as x 3 = 12, 3 is the known factor,
or given factor. See Missing factor.

Less than. a is less than b means b is greater than a. See Greater than.
Match. SeeOne-to-one correspondence.
Member of a set. In any nonempty set of objects each object is a mem-

ber of the set. Synonymous with element of a set. For example,
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the set consisting of the elements a, b, c has for its members a, b,
c. It follows that a is a member of this set, b is a member of this
set, and c is a member of this S,11. The members of the set 1(3, 7), 91
are (3, 7) and 9. The members of a set may be ordered pairs as well
as numbers.

Minus. The name for the subtraction symbol, "." See under Symbol.
Missing addend. In a sentence such as 8 + = 12, one of the addends

is not given, or is "missing." The 0, called a frame, provides a
place in which to name the missing addend. Determination of the
missing addend in 8 + 0 = 12 corresponds to subtracting 8 from
12. That is, since 8 + 4 = 12, 4 = 12 -8

Missing factor. In a sentence such as 0 x 8 = 40. one of the factors is
not given, or is "missing." The 6, called a frame, provides a place
in which to name the missing factor. Determination of the missing
factor in 0 x 8 = 40 corresponds to dividing 40 by 8. That is, since
5 x 8 = 40, 5 = 40 8.

Multiple. A whole number a is a multip!e of a whole number b if there
is a *hole number c such that a = b x c. For example, 30 is a mul-
tiple of 10 because 30 = 10 x 3. 28 is a multiple of 7 because
28 = 7 x 4. The multiples of 10 are 0, 10, 20, 30, 40, ... . The set of
multiples of a nonzero number is an infinite set.

Multiplication. With every pair of whole numbers a and b multiplication
associates the product a x b. For example, with the pair 7 and 9
multiplication assigns the product 7 x 9, or 63. The product a x b
can be computed in the following ways:
I. If set A contains a elements and set B conta' is b elements, then

a x b = n(A X B), the number of elements is the cross-product
set, A X B.

2. Choose a sets, disjoint from each other, with b elements in each
of the a sets. Then a x b is the number of elements in the union of
these sets.

3. The number of elements in an a-by-b array is a x b.

4. On a number line, the product a x b is the number of units in a
single "jump" that covers the same distance as a jumps with b
units in each jump.

Multiplication property of one. For any whole number a, a x 1 = a and
1 x a = a. Informally stated, the product of any whole number and
1 is that whole number. See One in division.

Multiplication property of zero. For any whole number a, a x 0 = 0 and
0 x a = 0. Informal:y stated, the product of any whole number and
0 is 0. See Division by zero.

MA) is the number of elements in set A. See under Symbol.
Natural number. Each of the numbers I, 2, 3, 4, 5, ; any whole num-

ber except 0. (Some authors include 0 as a natural number, but we
do not.)
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Neutral element. Same meaning as identity element. See Identity ele-
ment for addition and Identity element for multiplication.

Notation, system of. See Numeration system.
Null set. See Empty set.
Number. A basic idea which is associated with a set. This association of

a number with a set is made in such a way that two equivalent sets
are associated with the same number while two nonequivalent sets
are associated with different numbers. See Counting number,
Natural number, and Whole number.

Number line. A drawing of a line (with arrows to indicate unlimited
length) on which a unit length has been selected and marked off
consecutively beginning at any fixed place and moving to the right.
The marks are labeled in order "0," "1," "2," "3," "4," "5," and
so on. The drawing below is an example of a number line.

I
_I_11-11 1 1

1

0 1 2 3 4 5 6 7 8 9 10

Numeral. Mark or name for a number; any symbol that names a num-
ber. For example, some numbers for the number five are "V,"
"4 + 1," "five," "5."

Numeration system. A scheme for naming numbers. Any organized sys-
tem of using words or marks to denote numbers. Examples: decimal
numeration system, Roman numeration system, Egyptian numera-
tion system.

One in division
a ÷ a = 1.
that whole
itself is 1.

. For any whole number a, a ÷ 1 = a and, if a # 0,
Informally stated, any whole number divided by 1 is

number, and any whole number (except 0) divided by

One-to-one correspondence between two sets. A pairing of the mem-
bers of the two sets, not necessarily different sets, so that each pair
contains exactly one member from each set, and each element of
each set is in exactly one pair. For example, one-to-one cor-
respondence between the sets (a, b, c, (land 11, 3, 5, 71 is shown by
the accompanying diagram. This correspondence can also be
shown by listing the pairs: (a, 5), (b, 1), (c, 7), (d, 3).

1 3 5 7

Operation. A set of associations for elements of two sets, pairing each
member of the first set with a member of the second set, but never
pairing the same member of the first set with more than one mem-
ber of the second set. In a binary operation the elements of the first
set are ordered pairs. According to this definition, addition, sub-
traction, multiplication, and division are binary operations. An op-
eration is a correspondence. [More on page following.'
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Mathematicians generally consider a binary operation on, say, set
A, to be more restricted: A binary operation on set A is a
correspondence between A X A and A such that every member of
A X A has a partner in set A. Under this restricted definition for
whole numbers, addition and multiplication are still binary opera-
tions while subtraction and division Are not.

Order property of addition. See Commutative property of addition.
Order property of multiplication. See Commutative property of multipli-

cation.
Ordered pair. Two objects considered together where one of the objects

is first in the pair and the other is second in the pair. The ordered
pair of numbers (4, 7) is different from the ordered pair (7, 4). In
an ordered pair the first and second elements (also called com-
ponents) may be the same, as in (7, 7).

Ordered set. The only ordered set to which we make reference in this
text is the ordered set of counting numbers {1, 2, 3 ,4 ,5, ... ). This
particular listing in the braces means that its members are assigned
specific positions in the ordering; namely, I is the first number, 2 is
the second number, 3 is the third, etc. The ordering of the count-
ing numbers used here is according to "size." Each number is I less

than its successor. This particular ordering is essential for
counting.

Pair. See Ordered pair.
Partial quotient. When a quotient has

=q
quotient.

Partition. To partition a set is to split up the set into nonempty disjoint
subsets so that every element in the set is in exactly one of the sub-
sets. See Division (I).

Place value. The number assigned to each position occupied by a digit in
a standard numeral. In the standard numeral "289," the "2" occupies
the position to which the value 100 is assigned. We say the "2" is in

the hundreds place. The place value of "2" in "289" is 100.

Plus. A name for the symbol " +." See under Symbol.

Positional value of digits in a numeral. See Place value.
Powers of ten. In this book, "powers of ten" refers to the numbers

1, 10, 100, 1,000, etc. These numbers are also expressed as 10", 10',
102, 10', etc.

Product. With every pair of whole numbers a and b multiplication asso-

been computed as a sum, each 24 ) 8,972

addend of this sum is called a 7200 300

partial quotient. For instance, in 1,772
6801,92 70

computing 8,972 4- 24, we obtain the
quotient 300 + 70 + 3. Each of the 72 3

numbers (300 or 70 or 3) is a partial r= 20 373
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ciates the product "a x b." The product of whole numbers a and b,
denoted by a x b, is the number of elements in a cross-product set
A X B, where n(A) = a and n(B) = b. Alternately, a x b is the num-
ber of elements in the union of a sets, disjoint from each other, with
b elements in each. Finally, a x b, the product of a and b, is the num-
ber of elements in an array having a rows and b columns. Example:
8 is the product of 4 and 2. See Multiplication.

Proper subset. Set A is a proper subset of set B if A is a subset of B
while B contains at least one element which is not a member of A.
Example: If a, b, c, and y are distinct elements, {a, b} is a proper
subset of {a, b, c, y).

Quotient. A number assigned to certain pairs of whole numbers by divi-
sion. In the sentence a ÷ b = q, the number q is called the quotient
of a and b. When we try to compute a ÷ b, the unique whole num-
ber q for which a = (q x b) + r with r < b is also called the quotient.
Examples: The quotient of 15 and 3 is 15 ÷ 3, or 5. In 17 = (2 x 7) + 3,
the number 2 is the quotient when we regard 7 as the divisor.

Remainder. When we try to compute a ÷ b, the unique whole number r
less than b for which a = (q x b) + r is called the remainder. For
example, in 15 = (2 x 7) + 1, the number 1 is the remainder.

Repeated addition. If m and n are whole numbers,
mxn=n+ni-n+...4-n-Fn.

Thus, for example,

1, i,..

in addends.

3 x 4 = 4 + 4 4- 4.
If in = 1, the right side is interpreted to mean n. If m = 0, the right
side is taken to mean 0.

Repetitive property. A numeration system has this property provided,
when any of its basic symbols is repeated in a numeral, it has the
same particular value regardless of its position. In the Egyptian sys-
tem, each basic symbol in -n n n- has the same value, 10. In our
system, each digit in "333" represents a different number according
to its position in the numeral, so our decimal numeration system
does not have the repetitive property.

Row. A horizontal line of objects in an array. The array below has four
rows. 0

C
0

0

0 0

0 0
0

0

0

0

a row

Set. Collection or group or aggregate of objects that may be concrete or
abstract, similar or dissimilar. One would usually like to be able to
decide if any particular object is or is not a member of the
set. Mathematicians usually do not define "set."

208

i

1



Glossary

Standard form of a numeral (Standard numeral, standard name for
a number). In the Hindu-Arabic system, a numeral consisting of
digits only without any sign of operation. The symbols "0," "1,"
"2," "3," "4," "5," ... " 1 1 , "12,5' "13," ... . See Expanded form.
The standard name for 2 + 3 is "5."

Standard numeral. See Standard form of a numeral.

Subset. Set A is a subset of set B if every member of A is also a member
of B. Alternately, set A is a subset of set B if every element not in

B is also not in A. As a special case, A may be the entire set B
itself. As another special case, A may be the empty set; that is, A
may have no elements. Thus, if set A is identical to set B, or if A
is the empty set, set A is a subset of set B.

Subtraction. With every pair of whole numbers a and b, provided a is
not less than b, subtraction assigns the difference of a and b, de-
noted by a b. For example, the difference of 8 and 2 is 8 2,

or 6.
Successor. If n is a whole number, then n + 1 is the successor of it. For

example, the successor of 0 is 1; the successor of 8 is 9; etc.

Sum. With every pair of numbers a and b addition associates the sum
a + b. The sum of whole numbers a and b, denoted by a + b, is
the number of elements in the union of sets A and B provided that
n(A) = a, n(B) = b, and sets A and B are disjoint. For example,
4 + 2, or 6, is the sum of 4 and 2. See Addition.

Symbol. A mark, a collection of marks, or an expression that is used to
communicate an idea. For example, numerals are symbols for
numbers. Some special mathematical symbols follow:

I 1 Braces. Sometimes called curly brackets. Consist of two
symbols used to enclose the names of members of a set or a
description of the members of a sit, as {a, b, ci and {even
numbers,. If nothing appears between the braces, then the
set has no members and is the empty set, designated by { }.

= Equal sign, The symbol is used between two expressions to
assert that the expressions name the same thing and, in
particular, when referring to numbers, name the same num-
ber. For example, 3 + 3 = 4 + 2; {a, b). {b, a}.

n(A) An abbreviation for any one of the following synonymous
expressions:
a) the number of elements in set A
b) the number associated with set A
c) the number property of set A
d) the number of set A
e) the cardinal number of set A
Three dots, as in 1, 2, 3, 4, 5, ..., signify that the indicated
pattern (in this case, of adding one) is to continue in-
definitely.
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+ The plus sign, a symbol of addition. The symbol "a + b"
(read "a plus b") names the sum of numbers a and b. See
Addition.

u A symbol for union. A U B (read "A union B") names the
union of sets A and B. A U B U C means the union of sets
A, B, and C.

> means "is greater than." For example, 5 > 3 means 5
is greater than 3.

< means "is less than." For example, 3 < 5 means 3 is
less than 5.
The minus sign, the symbol for subtraction. a b (read "a
minus b") names the difference of a and b, that is, the miss-
ing addend in the sentence + b = a. See Subtraction.

X The symbol for cross product. A X B (read "A cross B")
names the cross product of sets A and B. See Cross product.

x The "times sign," the symbol for multiplication. a x b (read
"a times b ") names the product of numbers a and b. See Mul-
tiplication.

4- The symbol for division. a + b (read "a divided by b") names
the result of dividing a by b, that is, the missing factor in
Oxb =a or b x = a, that is, the quotient of a and b.
See Division.

* Means "is not equal to," "does not equal."*The symbol is
used between two expressions to assert that the expressions
do not name the same thing. For example, 5 + 1 # 8 asserts
that 5 + 1 and 8 are different numbers.
A frame for entering a symbol. Examples: Compute the
missing number: = 14 + 2. Determine the missing opera-
tion: 2 3 = 6. When the same frame is repeated in a sen-
tence, the same symbol must be used. If different frames are
used, the symbols need not be different.

Union. The union of two sets is the set consisting of all the elements
that are in either or both of the two sets. The union of {x, y} and
{y, z, w} is {w, x, y, z }. See Symbol, U. If A = {x, y }, B = {y, z, w},
then the union of A and B is denoted by A U B. Thus
A U B = {w, x, y, z}. The union of two sets is the set that contaihs
all the elements of each set and no others. in more general terms,
the union of any collection of sets is the set consisting of all those
elements that are members of at least one of the sets in the given
collection.

Unit. In this book, the word "unit" is used in reference to a representa-
tion of a number line. Any length we wish to select is used as a
basic length to be marked off consecutively on the illustrated line.
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For example, we might choose as our unit the segment illustrated
by 1--1. Then we mark consecutively on the drawing of the num-
ber line as many of these lengths as we want.*I ft ti I II )
On the above representation of the number line, we have marked
off 7 of the selected units.

Whole number. One of the numbers 0, 1, 2, 3, .... The set of whole num-
bers consists of 0 and the counting numbers.
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